Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Funct Integr Genomics ; 24(2): 35, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368303

RESUMO

Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.


Assuntos
Protocaderinas , Neoplasias da Glândula Tireoide , Humanos , Prognóstico , Neoplasias da Glândula Tireoide/genética , Proliferação de Células , Carcinogênese , Biomarcadores , Microambiente Tumoral
2.
J Hepatol ; 77(3): 723-734, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35421427

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo. METHODS: Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models. RESULTS: Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin ß1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model. CONCLUSION: Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease. LAY SUMMARY: Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.


Assuntos
Células Endoteliais , Hipertensão Portal , Actinas/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Cromatina/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Glicólise , Histonas/metabolismo , Humanos , Hipertensão Portal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Mecanotransdução Celular , Camundongos , NF-kappa B/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G864-G879, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33728997

RESUMO

Liver injury and the unfolded protein response (UPR) are tightly linked, but their relationship differs with cell type and injurious stimuli. UPR initiation promotes hepatic stellate cell (HSC) activation and fibrogenesis, but the underlying mechanisms are unclear. Despite the complexity and overlap downstream of UPR transducers inositol-requiring protein 1α (IRE1α), activating transcription factor 6α (ATF6α), and protein kinase RNA-like ER kinase (PERK), previous research in HSCs primarily focused on IRE1α. Here, we investigated the fibrogenic role of ATF6α or PERK in vitro and HSC-specific UPR signaling in vivo. Overexpression of ATF6α, but not the PERK effector activating transcription factor 4 (ATF4), promoted HSC activation and fibrogenic gene transcription in immortalized HSCs. Furthermore, ATF6α inhibition through Ceapin-A7, or Atf6a deletion, disrupted transforming growth factor ß (TGFß)-mediated activation of primary human hepatic stellate cells (hHSCs) or murine hepatic stellate cells (mHSCs), respectively. We investigated the fibrogenic role of ATF6α in vivo through conditional HSC-specific Atf6a deletion. Atf6aHSCΔ/Δ mice displayed reduced fibrosis and HSC activation following bile duct ligation (BDL) or carbon tetrachloride (CCl4)-induced injury. The Atf6aHSCΔ/Δ phenotype differed from HSC-specific Ire1a deletion, as Ire1aHSCΔ/Δ mice showed reduced fibrogenic gene transcription but no changes in fibrosis compared with Ire1afl/fl mice following BDL. Interestingly, ATF6α signaling increased in Ire1aΔ/Δ HSCs, whereas IRE1α signaling was upregulated in Atf6aΔ/Δ HSCs. Finally, we asked whether co-deletion of Atf6a and Ire1a additively limits fibrosis. Unexpectedly, fibrosis worsened in Atf6aHSCΔ/ΔIre1aHSCΔ/Δ mice following BDL, and Atf6aΔ/ΔIre1aΔ/Δ mHSCs showed increased fibrogenic gene transcription. ATF6α and IRE1α individually promote fibrogenic transcription in HSCs, and ATF6α drives fibrogenesis in vivo. Unexpectedly, disruption of both pathways sensitizes the liver to fibrogenesis, suggesting that fine-tuned UPR signaling is critical for regulating HSC activation and fibrogenesis.NEW & NOTEWORTHY ATF6α is a critical driver of hepatic stellate cell (HSC) activation in vitro. HSC-specific deletion of Atf6a limits fibrogenesis in vivo despite increased IRE1α signaling. Conditional deletion of Ire1α from HSCs limits fibrogenic gene transcription without impacting overall fibrosis. This could be due in part to observed upregulation of the ATF6α pathway. Dual loss of Atf6a and Ire1a from HSCs worsens fibrosis in vivo through enhanced HSC activation.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Endorribonucleases/metabolismo , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Estreladas do Fígado/patologia , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo
4.
Cancer Sci ; 111(11): 4118-4128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860321

RESUMO

Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Clin Exp Pharmacol Physiol ; 47(3): 485-494, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793036

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumour. An increasing number of studies indicate that microRNAs (miRNAs) are critical regulators in the carcinogenesis and progression of HCC. MiR-627-5p has been identified as a tumour suppressor in colorectal cancer and glioblastoma multiforme. However, the function of miR-627-5p in HCC progression remains unclear yet. In our present study, miR-627-5p was determined to be low-expressed in HCC tissues and cell lines. Furthermore, miR-627-5p was expressed at significantly lower levels in HCC tissues with tumour size >5 cm or advanced tumour stages (III+IV). Additionally, HCC patients with low miR-627-5p level had a significantly poorer overall survival. Functionally, ectopic expression of miR-627-5p obviously inhibited the proliferation, and induced G1 phase arrest and apoptosis of Hep3B and SMMC-7721 cells. Conversely, miR-627-5p silencing facilitated HCC cell proliferation, cell cycle progression and apoptosis resistance. In vivo experiments further confirmed that miR-627-5p overexpression repressed the growth of Hep3B cells in mice. Mechanistically, BCL3 transcription coactivator was predicted as a direct target of miR-627-5p. MiR-627-5p overexpression reduced, whereas miR-627-5p knockdown enhanced the expression of BCL3 protein in HCC cells. Luciferase reporter assay confirmed the direct binding between miR-627-5p and 3'UTR of BCL3. The expression of BCL3 protein was negatively correlated with miR-627-5p level in HCC tissues. More importantly, re-expression of BCL3 partially reversed miR-627-5p induced inhibitory effects on Hep3B cells. In conclusion, these results demonstrated that miR-627-5p functioned as a tumour suppressor in HCC possibly by attenuating BCL3. This finding might offer a new therapeutic target for HCC treatment.


Assuntos
Proteína 3 do Linfoma de Células B/biossíntese , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/fisiologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/biossíntese , Animais , Proteína 3 do Linfoma de Células B/antagonistas & inibidores , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
J Cell Mol Med ; 23(12): 8292-8304, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31576658

RESUMO

Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR-1914 in HCC. Here, we first confirmed that miR-1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR-1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR-1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR-1914 in HCC cells. In addition, down-regulation of AKT phosphorylation inhibited the effects of miR-1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR-1914 in HCC; thus, lncRNA DUXAP10 regulated miR-1914 expression and modulated the GPR39/PI3K/AKT-mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10-regulated miR-1914 plays a functional role in inhibiting HCC progression by targeting GPR39-mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Fosfotransferases/metabolismo , RNA Longo não Codificante/genética , Receptores Acoplados a Proteínas G/genética , Idoso , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terapêutica com RNAi/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
J Cell Biochem ; 120(6): 10310-10322, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30556161

RESUMO

Extensive evidence indicate that long noncoding RNAs (lncRNAs) regulates the tumorigenesis and progression of hepatocellular carcinoma (HCC). However, the expression and biological function of lncRNA A1BG antisense RNA 1 (A1BG-AS1) were poorly known in HCC. Here, we found the underexpression of A1BG-AS1 in HCC via analysis of The Cancer Genome Atlas database. Further analyses confirmed that A1BG-AS1 expression in HCC was markedly lower than that in noncancerous tissues based on our HCC cohort. Clinical association analysis revealed that low A1BG-AS1 expression correlated with poor prognostic features, such as microvascular invasion, high tumor grade, and advanced tumor stage. Follow-up data indicated that low A1BG-AS1 level evidently correlated with poor clinical outcomes of HCC patients. Moreover, forced expression of A1BG-AS1 repressed proliferation, migration, and invasion of HCC cells in vitro. Conversely, A1BG-AS1 knockdown promoted these malignant behaviors in HepG2 cells. Mechanistically, A1BG-AS1 functioned as a competing endogenous RNA by directly sponging miR-216a-5p in HCC cells. Notably, miR-216a-5p restoration rescued A1BG-AS1 attenuated proliferation, migration and invasion of HCCLM3 cells. A1BG-AS1 positively regulated the levels of phosphatase and tensin homolog and SMAD family member 7, which were reduced by miR-216a-5p in HCC cells. Altogether, we conclude that A1BG-AS1 exerts a tumor suppressive role in HCC progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/antagonistas & inibidores , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Feminino , Seguimentos , Glicoproteínas/genética , Humanos , Imunoglobulinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Oligonucleotídeos Antissenso/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Proteína Smad7/genética , Proteína Smad7/metabolismo , Células Tumorais Cultivadas
8.
Exp Cell Res ; 371(1): 63-71, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30056064

RESUMO

Pancreatic stellate cells (PSCs), a pivotal component of the tumor microenvironment, contribute to tumor growth and metastasis. PSC-derived factors are essential for triggering the generation and maintenance of cancer stem cells (CSCs). However, the mechanisms by which paracrine signals regulate CSC-like properties such as glycolytic metabolism have not been fully elucidated. Here, we report that two pancreatic cancer cell lines, Panc-1 and MiaPaCa-2, reacted differently when treated with hepatocyte growth factor (HGF) secreted from PSCs. MiaPaCa-2 cells showed little response with regard to CSC-like properties after HGF treatment. We have shown that in Panc-1 cells by activating its cognate receptor c-MET, paracrine HGF resulted in YAP nuclear translocation and HIF-1α stabilization, thereby promoting the expression of CSC pluripotency markers NANOG, OCT-4 and SOX-2 and tumor sphere formation ability. Furthermore, HGF/c-MET/YAP/HIF-1α signaling enhanced the expression of Hexokinase 2 (HK2) and promoted glycolytic metabolism, which may facilitate CSC-like properties. Collectively, our study demonstrated that HGF/c-MET modulates tumor metabostemness by regulating YAP/HIF-1α and may hold promise as a potential therapeutic target against pancreatic cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pancreáticas/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Glicólise/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Comunicação Parácrina/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Transporte Proteico , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição , Microambiente Tumoral , Proteínas de Sinalização YAP
9.
J Cell Biochem ; 119(11): 9498-9512, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30010221

RESUMO

The existences of cancer stem cells in patients with pancreatic cancer are considered as pivotal factors contributing to chemoresistance and disease relapse. Glypican-4 (GPC4) is one of the members of the glypicans family, which underlies human congenital malformations and multiple diseases. However, its potential biological function in pancreatic cancer still remains elusive. In this study, we are the first to demonstrate that GPC4 was involved in 5-fluorouracil (5-FU) resistance and pancreatic cancer stemness through comprehensive bioinformatical analysis. Functional experiments showed that knockdown of GPC4 sensitized pancreatic cancer cells to 5-FU and attenuated stem cell-like properties. In terms of mechanism research, knockdown of GPC4 suppressed the activation of Wnt/ß-catenin pathway and its downstream targets. Furthermore, the expression of GPC4 was significantly upregulated in pancreatic cancer tissues compared with normal tissues and remarkably correlated with patients' overall survival according to the data derived from the Cancer Genome Atlas database. Taken together, our results suggest that GPC4 is a key regulator in chemoresistance and pancreatic cancer stemness. Thus, targeting GPC4 may serve as a promising strategy for pancreatic cancer therapy.


Assuntos
Fluoruracila/farmacologia , Glipicanas/metabolismo , Neoplasias Pancreáticas/metabolismo , beta Catenina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Biologia Computacional , Glipicanas/genética , Humanos , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética
10.
Biochem Biophys Res Commun ; 503(4): 2543-2548, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30208523

RESUMO

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury continued to be a significant clinical problem. The aim of this study was to examine whether the protective effects of 17-estradiol (E2) on hepatic ischemia/reperfusion (I/R) injury was associated with the downregulation of the angiotensin II (Ang II)/AT1R pathway. METHODS: Forty male Sprague Dawley rats were randomized into five groups: Sham operation, ischemia/reperfusion (I/R), I/R + E2, I/R + E2+estrogen receptor antagonist ICI 182,780 (ICI), and I/R + E2+ Ang II subtype I receptor (AT1R) antagonist losartan (LOS) groups. A model of total hepatic I/R was established by portal pedicle clamping for 60 min followed by reperfusion. At onset of ischemia, rats were treated with vehicle, E2, or LOS. ICI was given 30 min before E2 administration. At 24 h after reperfusion, blood samples and liver tissues were collected and subjected to histological examination, biochemical assays, and Western blot assays. RESULTS: Compared with I/R group, the degree of hepatocyte damage, serum ALT and TNF-α levels, hepatic MDA level and MPO activity were decreased in I/R + E2 group (all p < 0.05). Moreover, the serum and liver Ang II levels and hepatic AT1R protein level in I/R + E2 group were also significantly reduced compared with I/R group (all p < 0.05). However, the protective effect of E2 could be abolished by ICI administration. In contrast, administration of LOS conferred similar, but not as effective as E2, protective effects on hepatic I/R injury, without affecting Ang II and AT1R levels. CONCLUSIONS: The salutary effects of E2 on hepatic I/R injury are mediated in part by downregulating the Ang II/AT1R pathway.


Assuntos
Angiotensina II/metabolismo , Estrogênios/farmacologia , Fígado/patologia , Receptor Tipo 1 de Angiotensina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Regulação para Baixo , Masculino , Substâncias Protetoras , Ratos , Ratos Sprague-Dawley
11.
Mol Cancer ; 16(1): 131, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738823

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated mortality worldwide with an overall five-year survival rate less than 7%. Accumulating evidence has revealed the cancer preventive and therapeutic effects of metformin, one of the most widely prescribed medications for type 2 diabetes mellitus. However, its role in pancreatic cancer is not fully elucidated. Herein, we aimed to further study the preventive and therapeutic effects of metformin in genetically engineered mouse models of pancreatic cancer. METHODS: LSL-KrasG12D/+; Pdx1-Cre (KC) mouse model was established to investigate the effect of metformin in pancreatic tumorigenesis suppression; LSL-KrasG12D/+; Trp53fl/+; Pdx1-Cre (KPC) mouse model was used to evaluate the therapeutic efficiency of metformin in PDAC. Chronic pancreatitis was induced in KC mice by peritoneal injection of cerulein. RESULTS: Following metformin treatment, pancreatic acinar-to-ductal metaplasia (ADM) and mouse pancreatic intraepithelial neoplasia (mPanIN) were decreased in KC mice. Chronic pancreatitis induced a stroma-rich and duct-like structure and increased the formation of ADM and mPanIN lesions, in line with an increased cytokeratin 19 (CK19)-stained area. Metformin treatment diminished chronic pancreatitis-mediated ADM and mPanIN formation. In addition, it alleviated the percent area of Masson's trichrome staining, and decreased the number of Ki67-positive cells. In KPC mice, metformin inhibited tumor growth and the incidence of abdominal invasion. More importantly, it prolonged the overall survival. CONCLUSIONS: Metformin inhibited pancreatic cancer initiation, suppressed chronic pancreatitis-induced tumorigenesis, and showed promising therapeutic effect in PDAC.


Assuntos
Carcinogênese/efeitos dos fármacos , Metformina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinogênese/metabolismo , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Queratina-19/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Pâncreas/efeitos dos fármacos , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo
12.
Int Immunopharmacol ; 137: 112475, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909498

RESUMO

BACKGROUND: The occurrence and progression of hepatocellular carcinoma (HCC) are significantly affected by DNA damage response (DDR). Exploring DDR-related biomarkers can help predict the prognosis and immune characteristics of HCC. METHODS: First, the single-cell RNA sequencing (scRNA-seq) dataset GSE242889 was processed and performed manual annotation. Then we found the marker genes of DDR-active subgroups based on "AUCell" algorithm. The "Limma" R package was used to identify differentially expressed genes (DEGs) between tumor and normal samples of HCC. The risk prognostic model was constructed by filtering genes using univariate Cox and LASSO regression analyses. Finally, the signatures were analyzed for immune infiltration, gene mutation, and drug sensitivity. Last but not least, KPNA2, which had the largest coefficient in our model was validated by experiments including western blot, MTT, colony formation and γ-H2AX assays. RESULTS: We constructed a prognostic model based on 5 DDR marker genes including KIF2C, CDC20, KPNA2, UBE2S and ADH1B for HCC. We also proved that the model had an excellent performance in both training and validation cohorts. Patients in the high-risk group had a poorer prognosis, different immune features, gene mutation frequency, immunotherapy response and drug sensitivity compared with the low-risk group. Besides, our experimental results proved that KPNA2 was up-regulated in liver cancer cells than in hepatocytes. More importantly, the knockdown of KPNA2 significantly inhibited cell variability, proliferation and promoted DNA damage. CONCLUSIONS: We innovatively integrated scRNA-seq and bulk RNA sequencing to construct the DDR-related prognostic model. Our model could effectively predict the prognosis, immune landscape and therapy response of HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Dano ao DNA , Neoplasias Hepáticas , Análise de Célula Única , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Prognóstico , Dano ao DNA/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Análise de Sequência de RNA
13.
J Cancer ; 15(9): 2810-2828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577599

RESUMO

Background: Previous studies have shown that cellular senescence is strongly associated with tumorigenesis and the tumor microenvironment. Accordingly, we developed a novel prognostic signature for intrahepatic cholangiocarcinoma (ICCA) based on senescence-associated long non-coding RNAs (SR-lncRNAs) and identified a lncRNA-miRNA-mRNA axis involving in ICCA. Methods: Based on the 197 senescence-associated genes (SRGs) from Genacards and their expression in Fu-ICCA cohort, we identified 20 lncRNAs as senescence-associated lncRNAs (SR-lncRNAs) through co-expression and cox-regression analysis. According to 20 SR-lncRNAs, patients with ICCA were classified into 2 molecular subtypes using unsupervised clustering machine learning approach and to explore the prognostic and functional heterogeneity between these two subtypes. Subsequently, we integrated 113 machine learning algorithms to develop senescence-related lncRNA signature, ultimately identifying 11 lncRNAs and constructing prognostic models and risk stratification. The correlation between the signature and the immune landscape, immunotherapy response as well as drug sensitivity are explored too. Results: We developed a novel senescence related signature. The predictive model and risk score calculated by the signature exhibited favorable prognostic predictive performance, which is a suitable independent risk factor for the prognosis of patients with ICCA based on Kaplan-Meier plotter, nomogram and receiving operating characteristic (ROC) curves. The results were validated using external datasets. Estimate, ssGSEA (single sample gene set enrichment analysis), IPS (immunophenotype score) and TIDE (tumor immune dysfunction and exclusion) algorithms revealed higher immune infiltration, higher immune scores, lower immune escape potential and better response to immunotherapy in the high-risk group. In addition, signature identifies eight chemotherapeutic agents, including cisplatin for patients with different risk levels, providing guidance for clinical treatment. Finally, we identified a set of lncRNA-miRNA-mRNA axes involved in ICCA through regulation of senescence. Conclusion: SR-lncRNAs signature can favorably predict the prognosis, risk stratification, immune landscape and immunotherapy response of patients with ICCA and consequently guide individualized treatment.

15.
Int J Biol Sci ; 19(13): 4206-4222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705741

RESUMO

Matrix stiffness is a central modulator of hepatic stellate cells (HSCs) activation and hepatic fibrogenesis. However, the long non-coding RNAs (lncRNAs)-regulated transcriptional factors linking matrix stiffness to alterations in HSCs phenotype are not completely understood. In this study, we investigated the effects of matrix stiffness on HSCs activation and its potential mechanism. Through analysis the RNA-seq data with human primary HSCs cultured on 0.4 kPa and 25.6 kPa hydrogel, we identified that forkhead box protein C2 (FOXC2) and its antisense lncRNA FXOC2-AS1 as the new mechanosensing transcriptional regulators that coordinate HSCs responses to the matrix stiffness, moreover, FOXC2 and FOXC2-AS1 expression were also elevated in human fibrosis and cirrhosis tissues. The matrix stiffness was sufficient to activate HSCs into myofibroblasts, resulting in nuclear accumulation of FOXC2. Disrupting FOXC2 and FOXC2-AS1 level abrogated stiffness-induced activation of HSCs. Further mechanistic studies displayed that stiffness-upregulated lncRNA FOXC2-AS1 had no influence on transcription of FOXC2. FOXC2-AS1 exerted its biological function through maintaining the RNA stability of FOXC2, and protecting FOXC2 mRNA from degradation by RNA exosome complex. Additionally, rescue assays confirmed that reintroduction of FOXC2 in FOXC2-AS1-depleted HSCs reversed the repression of FOXC2-AS1 knockdown on stiffness-induced HSCs activation. In AAV6-treated mice fibrotic models, targeting FOXC2 in vivo lead to a reduced degree of liver fibrosis. In sum, our study uncovers a reciprocal crosstalk between matrix stiffness and FOXC2-AS1/FOXC2 axis leading to modulation of HSCs mechanoactivation and liver fibrosis, and present AAV6 shRNA as an effective strategy that targets FOXC2 leading to the resolution of liver fibrosis.


Assuntos
Células Estreladas do Fígado , RNA Longo não Codificante , Animais , Humanos , Camundongos , Transdiferenciação Celular/genética , Modelos Animais de Doenças , Cirrose Hepática/genética , Miofibroblastos , RNA Longo não Codificante/genética
17.
Cell Rep ; 38(6): 110349, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139382

RESUMO

Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-ß. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or anti-PD-L1 antibody. We find that PD-L1, produced by HSCs, is required for HSC activation by stabilizing TGF-ß receptors I (TßRI) and II (TßRII). While the extracellular domain of PD-L1 (amino acids 19-238) targets TßRII protein to the plasma membrane and protects it from lysosomal degradation, a C-terminal 260-RLRKGR-265 motif on PD-L1 protects TßRI mRNA from degradation by the RNA exosome complex. PD-L1 is required for HSC expression of tumor-promoting factors, and targeting HSC PD-L1 by shRNA or Cre/loxP recombination suppresses HSC activation and ICC growth in mice. Thus, myofibroblast PD-L1 can modulate the tumor microenvironment and tumor growth by a mechanism independent of immune suppression.


Assuntos
Antígeno B7-H1/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/patologia , Miofibroblastos/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Animais , Movimento Celular , Proliferação de Células/fisiologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Camundongos , Miofibroblastos/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/imunologia
18.
J Exp Clin Cancer Res ; 40(1): 14, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407730

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), the primary component of tumor stroma in tumor microenvironments, are well-known contributors to the malignant progression of gallbladder cancer (GBC). Thrombospondins (THBSs or TSPs) comprise a family of five adhesive glycoproteins that are overexpressed in many types of cancers. However, the expression and potential roles of TSPs in the crosstalk between CAFs and GBC cells has remained unclear. METHODS: Peritumoral fibroblasts (PTFs) and CAFs were extracted from GBC tissues. Thrombospondin expression in GBC was screened by RT-qPCR. MTT viability assay, colony formation, EdU incorporation assay, flow cytometry analysis, Transwell assay, tumorsphere formation and western blot assays were performed to investigate the effects of CAF-derived TSP-4 on GBC cell proliferation, EMT and cancer stem-like features. Subcutaneous tumor formation models were established by co-implanting CAFs and GBC cells or GBC cells overexpressing heat shock factor 1 (HSF1) to evaluate the roles of TSP-4 and HSF1 in vivo. To characterize the mechanism by which TSP-4 is involved in the crosstalk between CAFs and GBC cells, the levels of a variety of signaling molecules were detected by coimmunoprecipitation, immunofluorescence staining, and ELISA assays. RESULTS: In the present study, we showed that TSP-4, as the stromal glycoprotein, is highly expressed in CAFs from GBC and that CAF-derived TSP-4 induces the proliferation, EMT and cancer stem-like features of GBC cells. Mechanistically, CAF-secreted TSP-4 binds to the transmembrane receptor integrin α2 on GBC cells to induce the phosphorylation of HSF1 at S326 and maintain the malignant phenotypes of GBC cells. Moreover, the TSP-4/integrin α2 axis-induced phosphorylation of HSF1 at S326 is mediated by Akt activation (p-Akt at S473) in GBC cells. In addition, activated HSF1 signaling increased the expression and paracrine signaling of TGF-ß1 to induce the transdifferentiation of PTFs into CAFs, leading to their recruitment into GBC and increased TSP-4 expression in CAFs, thereby forming a positive feedback loop to drive the malignant progression of GBC. CONCLUSIONS: Our data indicate that a complex TSP-4/integrin α2/HSF1/TGF-ß cascade mediates reciprocal interactions between GBC cells and CAFs, providing a promising therapeutic target for gallbladder cancer patients.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Vesícula Biliar/genética , Integrina alfa2/metabolismo , Trombospondinas/metabolismo , Animais , Proliferação de Células , Feminino , Neoplasias da Vesícula Biliar/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Transfecção , Microambiente Tumoral
19.
Cell Death Dis ; 12(12): 1152, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903711

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer with poor clinical outcomes. Long non-coding RNAs (lncRNAs) are extensively involved in the tumorigenesis and progression of HCC. However, more investigations should be carried out on novel lncRNAs and their effects on HCC. Here we identified a novel lncRNA KDM4A-AS1, which was aberrantly overexpressed in HCC tissues, associated with unfavorable clinical features and poor prognosis of patients. KDM4A-AS1 promoted HCC cell proliferation, migration, and invasion in vitro and contributed to HCC growth and lung metastasis in vivo. Mechanistically, KDM4A-AS1 was inversely modulated by miR-411-5p at the post-transcriptional level and facilitated Karyopherin α2 (KPNA2) expression by competitively binding miR-411-5p, thereby activating the AKT pathway. KPNA2 silencing, miR-411-5p overexpression, and AKT inhibitor (MK2206) consistently reversed KDM4A-AS1-enhanced proliferation, mobility, and EMT of HCC cells. KDM4A-AS1 was identified as a novel hypoxia-responsive gene and transactivated by hypoxia-inducible factor 1α (HIF-1α) in HCC cells. In turn, KDM4A-AS1 regulated HIF-1α expression through the KPNA2/AKT signaling pathway. Hence, this study revealed a novel hypoxia-responsive lncRNA, KDM4A-AS1, which contributed to HCC growth and metastasis via the KDM4A-AS1/KPNA2/HIF-1α signaling loop. Our findings provide a promising prognostic and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
20.
J Exp Clin Cancer Res ; 40(1): 72, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596983

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are widely involved in human cancers' progression by regulating tumor cells' various malignant behaviors. MAPKAPK5-AS1 has been recognized as an oncogene in colorectal cancer. However, the biological role of MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) has not been explored. METHODS: Quantitative real-time PCR was performed to detect the level of MAPKAPK5-AS1 in HCC tissues and cell lines. The effects of MAPKAPK5-AS1 on tumor growth and metastasis were assessed via in vitro experiments, including MTT, colony formation, EdU, flow cytometry, transwell assays, and nude mice models. The western blotting analysis was carried out to determine epithelial-mesenchymal transition (EMT) markers and AKT signaling. The interaction between MAPKAPK5-AS1, miR-154-5p, and PLAGL2 were explored by luciferase reporter assay and RNA immunoprecipitation. The regulatory effect of HIF-1α on MAPKAPK5-AS1 was evaluated by chromatin immunoprecipitation. RESULTS: MAPKAPK5-AS1 expression was significantly elevated in HCC, and its overexpression associated with malignant clinical features and reduced survival. Functionally, MAPKAPK5-AS1 knockdown repressed the proliferation, mobility, and EMT of HCC cells and induced apoptosis. Ectopic expression of MAPKAPK5-AS1 contributed to HCC cell proliferation and invasion in vitro. Furthermore, MAPKAPK5-AS1 silencing suppressed, while MAPKAPK5-AS1 overexpression enhanced HCC growth and lung metastasis in vivo. Mechanistically, MAPKAPK5-AS1 upregulated PLAG1 like zinc finger 2 (PLAGL2) expression by acting as an endogenous competing RNA (ceRNA) to sponge miR-154-5p, thereby activating EGFR/AKT signaling. Importantly, rescue experiments demonstrated that the miR-154-5p/PLAGL2 axis mediated the function of MAPKAPK5-AS1 in HCC cells. Interestingly, we found that hypoxia-inducible factor 1α (HIF-1α), a transcript factor, could directly bind to the promoter to activate MAPKAPK5-AS1 transcription. MAPKAPK5-AS1 regulated HIF-1α expression through PLAGL2 to form a hypoxia-mediated MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC. CONCLUSIONS: Our results reveal a MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC progression and suggest that MAPKAPK5-AS1 could be a potential novel therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/metabolismo , Idoso , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA