Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Sci Technol ; 57(47): 18550-18562, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36474357

RESUMO

The efficient and selective removal of refractory antibiotics from high-strength antibiotic production wastewater is crucial but remains a substantial challenge. In this study, a novel ozone micronano-bubble (MNB)-enhanced treatment system was constructed for antibiotic production wastewater treatment. Compared with conventional ozone, ozone MNBs exhibit excellent treatment efficiency for oxytetracycline (OTC) degradation and toxicity decrease. Notably, this study identifies the overlooked singlet oxygen (1O2) for the first time as a crucial active species in the ozone MNB system through probe and electron paramagnetic resonance methods. Subsequently, the oxidation mechanisms of OTC by ozone MNBs are systematically investigated. Owing to the high reactivity of OTC toward 1O2, ozone MNBs enhance the selective and anti-interference performance of OTC degradation in raw OTC production wastewater with complex matrixes. This study provides insights into the mechanism of ozone MNB-enhanced pollutant degradation and a new perspective for the efficient treatment of high-concentration industrial wastewater using ozone MNBs. In addition, this study presents a promising technology with scientific guidance for the treatment of antibiotic production wastewater.


Assuntos
Oxitetraciclina , Ozônio , Oxitetraciclina/análise , Águas Residuárias , Oxigênio Singlete , Antibacterianos
2.
Environ Sci Technol ; 56(22): 15941-15952, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36264842

RESUMO

Incomplete mineralization of antibiotics in biological sludge systems poses a risk to the environment. In this study, the toxicity associated with ciprofloxacin (CIP) biodegradation in activated sludge (AS), anaerobic methanogenic sludge (AnMS), and sulfur-mediated sludge (SmS) systems was examined via long-term bioreactor tests and a series of bioassays. The AS and AnMS systems were susceptible to CIP and its biotransformation products (TPs) and exhibited performance deterioration, while the SmS system exhibited high tolerance against the toxicity of CIP and its TPs along with excellent pollutant removal. Up to 14 TPs were formed via piperazinyl substituent cleavage, defluorination, decarboxylation, acetylation, and hydroxylation reactions in AS, AnMS, and SmS systems. Biodegradation of CIP in the AS, AnMS, and SmS systems, however, could not completely eliminate its toxicity as evident from the inhibition of Vibrio fischeri luminescence along with Escherichia coli K12 and Bacillus subtilis growth. The anaerobic systems (AnMS and SmS) were more effective than the aerobic AS system at CIP biodegradation, significantly reducing the antibacterial activity of CIP and its TPs in the aqueous phase. In addition, the quantitative structure-activity relationship analysis indicated that the TPs produced via decarboxylation and hydroxylation (TP2 and TP4) as well as by cleavage of piperazine (TP12, TP13, and TP14) exhibited higher toxicity than CIP. The findings of this study provide insights into the toxicity and possible risks associated with CIP biodegradation in biological wastewater treatment.


Assuntos
Ciprofloxacina , Purificação da Água , Ciprofloxacina/análise , Esgotos/microbiologia , Biodegradação Ambiental , Antibacterianos
3.
Environ Res ; 193: 110539, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253703

RESUMO

Methanogenic sludge digestion plays a pivotal role in attenuating and hygienizing the massively-produced waste activated sludge (WAS), which is predominantly composed of microbial cells and extracellular polymeric substances (EPS). The efficient sludge digestion requires a variety of functionally active microorganisms working together closely to convert sludge organic matter into biogas. Nonetheless, the digestion efficiency (or digestibility quantified as carbon removal efficiency) of major sludge constituents (i.e., microbial cells and EPS) and associated functionally active microorganisms in sludge digesters remain elusive. In this study, we identified the digestibility of sludge microbial cells and the associated functionally active microorganisms by using Escherichia coli (E. coli)-fed digestion and microbial source tracking. The average carbon removals in four digesters fed with fresh WAS (WAS-AD), thermal pretreated WAS (Thermal-WAS-AD), E. coli cells (E.coli-AD) and thermal pretreated E. coli cells (Thermal-E.coli-AD) were 30.6 ± 3.4%, 45.8 ± 2.9%, 69.0 ± 3.4% and 68.9 ± 4.6%, respectively. Compared to WAS-AD and Thermal-WAS-AD, the significantly higher carbon removals in E. coli-AD and Thermal-E. coli-AD suggested the remarkably higher digestibility of microbial cells than EPS, and releasing organic matter from EPS might be a rate-limiting step in sludge digestion. Functionally active microorganisms for microbial cell digestion predominantly included fermenters (e.g., Petrimonas and Lentimicrobium), syntrophic acetogens (e.g., Synergistaceae) and methanogens (e.g., Methanosaeta and Methanosarcina). Microbial source tracking estimation showed that the microbial cell-digesting populations accounted for 35.6 ± 9.1% and 70.3 ± 10.1% of total microbial communities in the WAS-AD and Thermal-WAS-AD, respectively. Accordingly, the functionally active microorganisms for digestion of both microbial cells and EPS accounted for 64.5 ± 12.1% and 97.3 ± 2.0% of total digestion sludge microbiome in WAS-AD and Thermal-WAS-AD, respectively. By contrast, feeding WAS-derived microorganisms accounted for 23.2 ± 4.4% and 2.3 ± 1.2% of total microbial communities in the WAS-AD and Thermal-WAS-AD, respectively.


Assuntos
Escherichia coli , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Eliminação de Resíduos Líquidos
4.
Can J Microbiol ; 62(5): 411-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27021584

RESUMO

To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.


Assuntos
Reatores Biológicos/microbiologia , Esgotos/microbiologia , Anaerobiose , Betaproteobacteria/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , Eliminação de Resíduos Líquidos/métodos
5.
Water Sci Technol ; 72(2): 245-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177407

RESUMO

The potential benefits of zero-valent iron-activated persulfate (Na2S2O8) oxidation in enhanced dewaterability of sludge, along with the associated mechanisms were investigated in this study. The sludge dewaterability was evaluated in terms of specific resistance to filtration (SRF) and water content. Based on these indexes, it was observed that ZVI-S2O8(2) oxidation effectively improved sludge dewaterability. The optimal conditions to give preferable dewaterability were found when the molar ratio of ZVI/S2O8(2-) was 5:1 and pH value was 3.0. The most important mechanism was proposed to be the degradation of extracellular polymeric substances (EPS) incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix fluorescence spectra revealed that the powerful SO4- and ·OH generated from ZVI-S2O8(2-) system destroyed the particular functional groups of fluorescing substances (aromatic protein-like and tryptophan protein-like substances), resulting in the release of bound water and the subsequent enhancement of dewaterability. Therefore, ZVI/S2O8(2-) oxidation is an alternative approach showing great potential to be applied in sludge treatment plants.


Assuntos
Ferro/química , Eliminação de Resíduos/métodos , Esgotos/química , Sulfetos/química , Oxirredução
6.
Water Res ; 256: 121590, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631241

RESUMO

The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.


Assuntos
Antibacterianos , Reatores Biológicos , Sulfatos , Enxofre , Águas Residuárias , Águas Residuárias/química , Enxofre/metabolismo , Sulfatos/metabolismo , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Eletrodos
7.
Bioresour Technol ; 402: 130776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701979

RESUMO

Insights into key properties of biochar with a fast adsorption rate and high adsorption capacity are urgent to design biochar as an adsorbent in pollution emergency treatment. Machine learning (ML) incorporating classical theoretical adsorption models was applied to build prediction models for adsorption kinetics rate (i.e., K) and maximum adsorption capacity (i.e., Qm) of emerging contaminants (ECs) on biochar. Results demonstrated that the prediction performance of adaptive boosting algorithm significantly improved after data preprocessing (i.e., log-transformation) in the small unbalanced datasets with R2 of 0.865 and 0.874 for K and Qm, respectively. The surface chemistry, primarily led by ash content of biochar significantly influenced the K, while surface porous structure of biochar showed a dominant role in predicting Qm. An interactive platform was deployed for relevant scientists to predict K and Qm of new biochar for ECs. The research provided practical references for future engineered biochar design for ECs removal.


Assuntos
Carvão Vegetal , Aprendizado de Máquina , Carvão Vegetal/química , Adsorção , Cinética , Modelos Teóricos , Poluentes Químicos da Água
8.
Bioresour Technol ; 394: 130239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142907

RESUMO

This study investigated the potential of micro-nano bubble (MNB) ozonation pretreatment to eliminate oxytetracycline (OTC) from wastewater and improve subsequent anaerobic digestion (AD) performance. The findings revealed that MNB ozonation achieved efficient OTC oxidation (>99 % in 60 min), and significantly enhanced methane production by 51 % compared to conventional ozonation (under 30 min of pretreatment). Additionally, MNB ozonation resulted in a decrease in the soluble chemical oxygen demand and reduced volatile fatty acid accumulation compared to conventional ozonation. Furthermore, the study sheds light on the profound impact of OTC and its oxidation by-products on the sludge microbiome. Exposure to OTC and its oxidation by-products resulted in alterations in extracellular polymeric substances composition and led to significant shifts in microbial community structure. This study highlights the promise of MNB ozonation as an effective approach for pharmaceutical pollutant removal and the optimization of AD performance in wastewater treatment, with implications for improved environmental sustainability.


Assuntos
Oxitetraciclina , Ozônio , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Ozônio/química , Metano , Reatores Biológicos
9.
Water Res ; 256: 121592, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626614

RESUMO

The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.


Assuntos
Processos Autotróficos , Reatores Biológicos , Desnitrificação , Nitrogênio , Enxofre , Poluentes Químicos da Água , Nitrogênio/metabolismo , Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas
10.
Water Res ; 263: 122173, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111213

RESUMO

Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.


Assuntos
Carbono , Ferro , Eliminação de Resíduos Líquidos , Águas Residuárias , Ferro/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Esgotos/química
11.
J Hazard Mater ; 465: 133394, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211522

RESUMO

Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.


Assuntos
Antibacterianos , Cefradina , Anaerobiose , Escherichia coli/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Metano/metabolismo , Reatores Biológicos
12.
Water Res ; 252: 121226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309071

RESUMO

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Águas Residuárias , Biodegradação Ambiental , Bactérias/metabolismo , Proteínas , Transferases/metabolismo
13.
Bioresour Technol ; 394: 130254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151207

RESUMO

The sustainable disposal of high-moisture municipal sludge (MS) has received increasing attention. Thermochemical conversion technologies can be used to recycle MS into liquid/gas bio-fuel and value-added solid products. In this review, we compared energy recovery potential of common thermochemical technologies (i.e., incineration, pyrolysis, hydrothermal conversion) for MS disposal via statistical methods, which indicated that hydrothermal conversion had a great potential in achieving energy recovery from MS. The application of machine learning (ML) in MS recycling was discussed to decipher complex relationships among MS components, process parameters and physicochemical reactions. Comprehensive ML models should be developed considering successive reaction processes of thermochemical conversion in future studies. Furthermore, challenges and prospects were proposed to improve effectiveness of ML for energizing thermochemical conversion of MS regarding data collection and preprocessing, model optimization and interpretability. This review sheds light on mechanism exploration of MS thermochemical recycling by ML, and provide practical guidance for MS recycling.


Assuntos
Esgotos , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Reciclagem , Incineração
14.
Water Res ; 246: 120753, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871376

RESUMO

Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure. SMX can be effectively biodegraded by the cleavage and rearrangement of the isoxazole ring, hydrogenation and hydroxylation reactions in sulfur-mediated biological wastewater system. These biodegradation pathways effectively reduced the acute toxicity, antibacterial activity, and ecotoxicities of SMX and its biotransformation products (TPs) in the effluent of the sulfur-mediated biological system. The TPs produced via hydrogenation (TP1), hydroxylation, and isoxazole ring cleavage (TP3, TP4, TP5, TP8, and TP9) exhibited lower toxicity than SMX. Under SMX stress, although the abundance of sulfonamide resistance genes increased, the total abundance of ARGs decreased due to the extrusion of some intracellular SMX by the efflux pump genes and the inactivation of some SMX through the biodegradation process. Efflux pump and inactivation, as the main resistance mechanisms of antibiotics in the sulfur-mediated biological system, play a crucial role in microbial self-defense. The findings of this study demonstrate the great potential of the sulfur-mediated biological system in SMX removal, detoxication, and ARGs environmental risk reduction.


Assuntos
Sulfametoxazol , Purificação da Água , Sulfametoxazol/toxicidade , Águas Residuárias , Antibacterianos , Biodegradação Ambiental , Isoxazóis
15.
Bioresour Technol ; 369: 128454, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503096

RESUMO

In the context of advocating carbon neutrality, there are new requirements for sustainable management of municipal sludge (MS). Hydrothermal carbonization (HTC) is a promising technology to deal with high-moisture MS considering its low energy consumption (without drying pretreatment) and value-added products (i.e., hydrochar). This study applied machine learning (ML) methods to conduct a holistic assessment with higher heating value (HHV) of hydrochar, carbon recovery (CR), and energy recovery (ER) as model targets, yielding accurate prediction models with R2 of 0.983, 0.844 and 0.858, respectively. Furthermore, MS properties showed positive (e.g., carbon content, HHV) and negative (e.g., ash content, O/C, and N/C) influences on the hydrochar HHV. By comparison, HTC parameters play a critical role for CR (51.7%) and ER (52.5%) prediction. The primary sludge was an optimal HTC feedstock while anaerobic digestion sludge had the lowest potential. This study provided a comprehensive reference for sustainable MS treatment and industrial application.


Assuntos
Carbono , Esgotos , Temperatura
16.
Sci Total Environ ; 882: 163562, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084915

RESUMO

A healthy sewage pipe system plays a significant role in urban water management by collecting and transporting wastewater and stormwater, which can be assessed by hydraulic model. However, sewage pipe defects have been observed frequently in recent years during regular pipe maintenance according to the captured interior videos of underground pipes by closed-circuit television (CCTV) robots. In this case, hydraulic model constructed based on a healthy pipe would produce large deviations with that in real hydraulic performance and even be out of work, which can result in unanticipated damages such as blockage collapse or stormwater overflows. Quick defect evaluation and defect quantification are the precondition to achieve risk assessment and model calibration of urban water management, but currently pipe defects assessment still largely relies on technicians to check the CCTV videos/images. An automated sewage pipe defect detection system is necessary to timely determine pipe issues and then rehabilitate or renew sewage pipes, while the rapid development of deep learning especially in recent five years provides a fantastic opportunity to construct automated pipe defect detection system by image recognition. Given the initial success of deep learning application in CCTV interpretation, the review (i) integrated the methodological framework of automated sewage pipe defect detection, including data acquisition, image pre-processing, feature extraction, model construction and evaluation metrics, (ii) discussed the state-of-the-art performance of deep learning in pipe defects classification, location, and severity rating evaluation (e.g., up to ~96 % of accuracy and 140 FPS of processing speed), and (iii) proposed risk assessment and model calibration in urban water management by considering pipe defects. This review introduces a novel practical application-oriented methodology including defect data acquisition by CCTV, model construction by deep learning, and model application, provides references for further improving accuracy and generalization ability of urban water management models in practical application.

17.
Water Res ; 244: 120512, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633209

RESUMO

The microbial community of a sequencing batch reactor operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was characterized through high-throughput sequencing and metagenomic analysis. The fermented food waste and chemically-enhanced primary sludge was fed in this bioreactor. After acclimation, the PHA yield achieved as high as 0.60-0.69 g CODPHA/g CODS. The complete changes of microbial community structure were found during shifts of feedstock. A synthesis of SCL/MCL-PHAs pathway was established for PHA-producing bioreactor in this mixed-culture system. The structure-performance relationship of PHA-producing microbial community and feedstock composition was investigated. The results showed that microbial community tends to be decentralized and prefer team work for PHA synthesis to consume the multiple substrates and digest inevitable non-VFA contents in fermented liquor. This study also discovered unreported potential PHA producers (e.g., genera Tabrizicola, Nannocystis, Ga0077539, Ga0077559, JOSHI-001, SNC69-320 and UBA2334) subsisting on municipal organic wastes and expands the current knowledge about mixed-culture system that the PHA synthesis pathway is widely existed in activated sludge.


Assuntos
Poli-Hidroxialcanoatos , Eliminação de Resíduos , Esgotos , Alimentos , Metagenômica , Reatores Biológicos , Redes e Vias Metabólicas
18.
Water Environ Res ; 84(2): 108-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22515059

RESUMO

The effect of different DNA extraction protocols on activated sludge DNA yield and bacterial community composition was evaluated by temperature gradient gel electrophoresis (TGGE). Nine different procedures to extract DNA were compared-sonication (30s), sonication (40s), sonication (50s), freezing-thawing, bead milling, sodium dodecyl sulfate (SDS)-lysozyme, SDS-proteinase K, SDS-lysozyme-proteinase, and a commercial extraction kit. It was found that the TGGE profiles and the DNA band numbers made significant differences via various extraction methods. The yield and purity of DNA extracted by sonication and other physical methods were not satisfactory, while the DNA purity extracted by SDS and other chemical-biological methods were better. Crude DNA extracts isolated by sonication and other physical methods passed the polymerase chain reaction, despite the absence of purification and acquired affluent DNA bands in TGGE. The affluence of bands in TGGE was not consistent with the yield and purification of DNA, but was correlative with extraction protocols. To analyze the activated sludge bacterial community by TGGE fingerprint, it is necessary to make a synthesis of the TGGE fingerprint profiles of chemical and physical DNA extraction methods to overcome the representative bias.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Esgotos/microbiologia , Impressões Digitais de DNA , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
19.
Water Res ; 220: 118646, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661505

RESUMO

The stress responses of sulfate-reducing bacteria (SRB) sludge to polyethylene (PE) microplastic exposure were revealed for the first time. In this study, a lab-scale sulfate-reducing up-flow sludge bed reactor was continuously operated with different concentrations of PE microplastics in the feed (20, 100, and 500 microplastic particles (MPs)/L). Exposure to low levels of PE microplastics (i.e., 20 MPs/L) had a limited effect on SRB consortia, whereas higher levels of PE microplastics imposed apparent physiological stresses on SRB consortia. Despite this, the overall reactor performance, i.e., chemical oxygen demand removal and sulfate conversion, was less affected by prolonged exposure to PE microplastics. Moreover, as the concentration of PE microplastics increased, the SRB consortia promoted the production of extracellular polymeric substances to a greater extent, especially the secretion of proteins. As a result, protective effects against the cytotoxicity of PE microplastics were provided. Batch experiments further demonstrated that leaching additives from PE microplastics (including acetyl tri-n­butyl citrate and bisphenol A, concentrations up to 5 µg/g sludge) exerted only a minor effect on the activity of SRB consortia. Additionally, microbial community analysis revealed active and potentially efficient sulfate reducers at different operational stages. Our results provide insight into the stress responses of SRB sludge under PE microplastic exposure and suggested that SRB consortia can gradually adapt to and resist high levels of PE microplastics. These findings may promote a better understanding of the stable operation of SRB sludge systems under specific environmental stimuli for practical applications.


Assuntos
Desulfovibrio , Esgotos , Reatores Biológicos , Desulfovibrio/metabolismo , Microplásticos , Plásticos , Polietileno , Esgotos/microbiologia , Sulfatos/metabolismo
20.
Bioresour Technol ; 362: 127826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029987

RESUMO

The activated sludge process (ASP) is widely used for wastewater treatment, and the aeration efficiency is crucial to the operation of wastewater treatment plants. Recently, microbubble (MB)- and nanobubble (NB)-aeration has attracted much attention as there is growing evidence that it holds a great promise for upgrading the process efficiency of current ASP under conventional macro-bubble-aeration. However, a comprehensive review to elucidate the potential application of MB- and NB-aeration in ASP is still lacking. Therefore, this review will provide a systematic introduction to MB- and NB-aeration (including the unique properties and generation methods of MBs and NBs), and gain mechanistic insights on how MB- and NB-aeration improve gas-liquid mass transfer. The recent advances in MB- and NB-aeration applications to ASP and the resultant effects are also highlighted and discussed in-depth. The review concludes with a brief consideration of future research interests.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Microbolhas , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA