Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2310706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446096

RESUMO

Photothermal treatment (PTT) has emerged as a promising avenue for biofilm elimination, yet its potential drawbacks, such as local hyperpyrexia and bacterial heat resistance, have posed challenges. To address these concerns, an innovative nanoplatform (Au@mSiO2-arg/ICG) is devised that integrates phototherapeutic and gas therapeutic functionalities. This multifaceted nanoplatform is composed of mesoporous silica-coated Au nanorods (Au@mSiO2), supplemented with l-arginine (l-arg) and indocyanine green (ICG), and is engineered for mild temperature PTT aimed at biofilm eradication. Au@mSiO2-arg/ICG nanoparticles (NPs) show excellent antibacterial effects through the generation of nitric oxide (NO) gas, heat, and reactive oxygen species (ROS) under 808 nm light irradiation. The ROS generated by ICG initiates a cascade reaction with l-arg, ultimately yielding NO gas molecules. This localized release of NO not only effectively curbs the expression of heat shock proteins 70 mitigating bacterial thermoresistance, but also reduces extracellular polymeric substance allowing better penetration of the therapeutic agents. Furthermore, this nanoplatform achieves an outstanding biofilm elimination rate of over 99% in an abscess model under 808 nm light irradiation (0.8 W·cm-2), thereby establishing its potential as a dependable strategy for NO-enhanced mild PTT and antibacterial photodynamic therapy (aPDT) in clinical settings.


Assuntos
Biofilmes , Verde de Indocianina , Raios Infravermelhos , Óxido Nítrico , Biofilmes/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Ouro/química , Dióxido de Silício/química , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Arginina/química , Arginina/farmacologia , Animais , Nanotubos/química
2.
Adv Mater ; 36(18): e2310065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290534

RESUMO

Lanthanide-based lead-free perovskite materials hold great promise for the development of high-resolution full-color displays in the future. Here, various Cs3LnCl6 perovskite nanocrystals (NCs) emitting light across the visible to near-infrared spectrum with remarkably high photoluminescence quantum yield (PLQY) are systemically prepared. Especially, by introducing multifunctional coumarin small molecules into Cs3EuCl6 NCs as an intermediate state, Cs3EuCl6 NCs can achieve an impressive PLQY of 92.4% with pure red emission and an exceptional energy transfer efficiency of nearly 93.2%. Furthermore, the lanthanide-based electroluminescent devices in red, green, and blue are successfully fabricated. Among them, the Cs3EuCl6-NC-based red light-emitting diode (LED) demonstrates a FWHM of 18 nm at 617 nm, an external quantum efficiency up to 5.17%, and a maximum brightness of 2373 cd m-2, which is the most excellent reported for lead-free narrowband (within 20 nm) emission devices. Notably, these devices exhibit an operating half-life of 440 h at a brightness level of 100 cd m-2, surpassing the performance of most reported lead-free perovskite LEDs (PLEDs). This work opens up exciting possibilities for the future commercialization of lanthanide-based PLEDs in the display industry, paving the way for more vibrant, energy-efficient, and long-lasting display technologies.

3.
Chem Phys Lipids ; 262: 105405, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795837

RESUMO

At present, consumers increasingly favored the natural food preservatives with fewer side-effects on health. The green tea catechins and black tea theaflavins attracted considerable interest, and their antibacterial effects were extensively reported in the literature. Epicatechin (EC), a green tea catechin without a gallate moiety, showed no bactericidal activity, whereas the theaflavin (TF), also lacking a gallate moiety, exhibited potent bactericidal activity, and the antibacterial effects of green tea catechins and black tea theaflavins were closely correlated with their abilities to disrupt the bacterial cell membrane. In our present study, the mechanisms of membrane interaction modes and behaviors of TF and EC were explored by molecular dynamics simulations. It was demonstrated that TF exhibited markedly stronger affinity for the POPG bilayer compared to EC. Additionally, the hydrophobic interactions of tropolone/catechol rings with the acyl chain part could significantly contribute to the penetration of TF into the POPG bilayer. It was also found that the resorcinol/pyran rings were the key functional groups in TF for forming hydrogen bonds with the POPG bilayer. We believed that the findings from our current study could offer useful insights to better understand the stronger antibacterial effects of TF compared to EC.


Assuntos
Biflavonoides , Catequina , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Catequina/química , Catequina/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Biflavonoides/química , Biflavonoides/metabolismo , Biflavonoides/farmacologia , Ligação de Hidrogênio
4.
Biosens Bioelectron ; 237: 115484, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352761

RESUMO

Efficient detection of related markers is significant for the early screening of COVID-19. Near infrared (NIR) light excited up-conversion fluorescence probes are ideal for biosensing but limited by the low luminescence efficiency. In this work, a novel highly stable opal photonic crystal (OPC) structure was designed to provide an OPC effect for up-conversion fluorescence enhancement, and sensitive Novel Coronavirus IgG up-conversion FRET-based sensor was further constructed. For the problems of water stability and mechanical stability of polymer OPC which cannot be solved for a long time, polymer spray combined with a flipped OPC film strategy is presented. Fragmented size OPC film was firmly fixed by polymer modification layer, which gave large size OPC film great water stability, mechanical stability and bending performance without affecting the fluorescence enhancement property. On this basis, the up-conversion emission intensity was enhanced significantly, and fluorescence resonant energy transfer (FRET) based Novel Coronavirus IgG antibody sensor was constructed. Monolayer up-conversion nanoparticles (UCNPs) on the surface of the polydopamine (PDA)/OPC film can make the fluorescent signal more sensitive, and effectively reduce the detection limit. The test device integrating NIR excitation and mobile phone realized the visual fast detection, showing remarkable sensing performance for COVID-19 antibodies with the limit of detection (LOD) of 0.1 ng mL-1. This detection platform will provide a more effective tool for early detection of the novel coronavirus.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas , Humanos , COVID-19/diagnóstico , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência , Polímeros/química
5.
Nanoscale ; 13(39): 16598-16607, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34585206

RESUMO

Lead halide perovskite quantum dots (PQDs) show great prospects in the field of optoelectronic applications. Although having high efficiency and narrow-band emission performance in the visible light region, the infrared multicolor luminescence performance of perovskite nanocrystals is still highly desired. In this work, in order to increase the luminescence intensity and extend the infrared multicolor luminescence, transition metal and rare earth ions are co-doped into PQDs. Herein, PQDs emitting at 1300 nm are realized by Pr3+ doping, which has not been reported in previous literature. The luminescence and kinetic process of Ni2+ and Pr3+ co-doped CsPbCl3 PQDs are studied, which exhibit considerably enhanced emission intensity at 400 nm and 1300 nm, with an overall quantum efficiency of photoluminescence (PLQY) of 89% and the highest infrared PLQY of 23%.

6.
J Mater Chem B ; 7(38): 5797-5807, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31483422

RESUMO

Photodynamic therapy (PDT), as an essential tumor treatment method, has received great attention; however, there are still some challenges such as hydrophobicity of most of the photosensitizers, safety of in vivo transport, and characteristics of oxygen consumption. Herein, we used albumin as the nanocarrier for the loading of Chlorin e6 (Ce6) photosensitizer. In the meantime, tirapazaming (TPZ) was co-loaded onto the nanocomposite, which could be activated by hypoxia caused by PDT for enhanced therapy. Considering the over irradiation problem, a strategy for measuring PDT degree by ratio fluorescence was utilized. The PDT monitoring design relies on ratio emissions of C6 (Coumarin 6) and Ce6 molecules since the red emission of Ce6 is dependent on the PDT capability. Based on the characterization of the albumin nanocomposites, we further explored the combined therapy effect at both the in vitro and in vivo levels and attained the corresponding results.


Assuntos
Cumarínicos/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Soroalbumina Bovina/química , Tiazóis/química , Tirapazamina/química , Animais , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Humanos , Luz , Fígado/patologia , Camundongos , Microscopia Confocal , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA