Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928063

RESUMO

In nature, plants have developed a series of resistance mechanisms to face various external stresses. As understanding of the molecular mechanisms underlying plant resistance continues to deepen, exploring endogenous resistance in plants has become a hot topic in this field. Despite the multitude of studies on plant-induced resistance, how plants respond to stress under natural conditions remains relatively unclear. To address this gap, we investigated Chinese pine (Pinus tabuliformis) using pine caterpillar (Dendrolimus tabulaeformis) under natural conditions. Healthy Chinese pine trees, approximately 10 years old, were selected for studying induced resistance in Huangtuliangzi Forestry, Pingquan City, Chengde City, Hebei Province, China. Pine needles were collected at 2 h and 8 h after feeding stimulation (FS) via 10 pine caterpillars and leaf clipping control (LCC), to simulate mechanical damage caused by insect chewing for the quantification of plant hormones and transcriptome and metabolome assays. The results show that the different modes of treatments significantly influence the contents of JA and SA in time following treatment. Three types of differentially accumulated metabolites (DAMs) were found to be involved in the initial response, namely phenolic acids, lipids, and flavonoids. Weighted gene co-expression network analysis indicated that 722 differentially expressed genes (DEGs) are positively related to feeding stimulation and the specific enriched pathways are plant hormone signal transduction and flavonoid biosynthesis, among others. Two TIFY transcription factors (PtTIFY54 and PtTIFY22) and a MYB transcription factor (PtMYB26) were found to be involved in the interaction between plant hormones, mainly in the context of JA signal transduction and flavonoid biosynthesis. The results of this study provide an insight into how JA activates, serving as a reference for understanding the molecular mechanisms of resistance formation in conifers responding to mandibulate insects.


Assuntos
Flavonoides , Pinus , Reguladores de Crescimento de Plantas , Transdução de Sinais , Pinus/genética , Pinus/metabolismo , Pinus/parasitologia , Animais , Reguladores de Crescimento de Plantas/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Larva/fisiologia , Transcriptoma , Mariposas/fisiologia , Mariposas/metabolismo , Vias Biossintéticas , Folhas de Planta/metabolismo , População do Leste Asiático
2.
Curr Issues Mol Biol ; 45(2): 1086-1099, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36826017

RESUMO

This experiment was conducted to define changes in metabolic pathways in response to mandibulate insect feeding and to provide a reference for further investigation of the molecular mechanisms underlying the development of conifer resistance. Chinese pine (Pinus tabuliformis Carr.) in good growth status in natural condition was chosen for stimulation by 10 pine caterpillars (Dendrolimus tabulaefomis Tsai et Liu) as feeding stimulation (FS), leaf clipping control (LCC) as mechanical damage, and CK group (with no treatment) (recorded as 0 h). The metabolome and total flavonoid content were measured in the needles at 0, 2, and 8 h after treatment. Plant hormones were measured with needles at 0, 0.5, 1, 1.5, 2, 4, 6, and 8 h after different treatments. The results show that a total of 30.8% flavonoids are identified by metabolomics analysis. Compared with leaf clipping control, feeding stimulation of Chinese pine caterpillars significantly induced the upregulation of metabolites in the flavonoid pathway in Chinese pine, and the plant hormones JA and IAA showed expression trends consistent with those of the metabolome. According to the biological processes of the four plant hormones involved, JA and SA are mostly involved in resistance formation, and in this study, both of them also have fluctuating expressions influenced by feeding stimulation, while the expressions of the growth-related hormones IAA and ABA have no significant changes at other time points except for 1 h after treatment. Thus, the flavonoid pathway is one of the main pathways involved in resistance formation in conifers, and JA and IAA are involved in the formation of resistance.

3.
Arch Insect Biochem Physiol ; 103(4): e21638, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31702074

RESUMO

Clostera anachoreta is one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan, and India, and so forth, and also the target insect of Cry1Ac toxin and Bt plants. Six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2, and PKM were found in this study, and they might be associated with the response to the Cry1Ac toxin, found by analyzing the transcriptome data. And the PI3K-Akt pathway was highly enriched in differentially expressed unigenes and linked to several crucial pathways, including the B-cell receptor signaling pathway, toll-like receptor pathway, and mitogen-activated protein kinase signaling pathway. They might be involved in the recovery stage of the damaged midgut during the response to sublethal doses of Cry1Ac toxin. This is the first study conducted to specifically investigate C. anachoreta response to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathways that could be involved in Btcry1Ac resistance development or could serve as targets for biologically based control mechanisms of this insect pest.


Assuntos
Proteínas de Bactérias/efeitos adversos , Endotoxinas/efeitos adversos , Proteínas Hemolisinas/efeitos adversos , Resistência a Inseticidas/genética , Mariposas/genética , Transcriptoma , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , China , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo
4.
Plant Direct ; 8(5): e590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779180

RESUMO

To investigate the molecular mechanism of the defense response of "Cabernet Sauvignon" grapes to feeding by Apolygus lucorum, high-throughput sequencing technology was used to analyze the transcriptome of grape leaves under three different treatments: feeding by A. lucorum, puncture injury, and an untreated control. The research findings indicated that the differentially expressed genes were primarily enriched in three aspects: cellular composition, molecular function, and biological process. These genes were found to be involved in 42 metabolic pathways, particularly in plant hormone signaling metabolism, plant-pathogen interaction, MAPK signaling pathway, and other metabolic pathways associated with plant-induced insect resistance. Feeding by A. lucorum stimulated and upregulated a significant number of genes related to jasmonic acid and calcium ion pathways, suggesting their crucial role in the defense molecular mechanism of "Cabernet Sauvignon" grapes. The consistency between the gene expression and transcriptome sequencing results further supports these findings. This study provides a reference for the further exploration of the defense response in "Cabernet Sauvignon" grapes by elucidating the expression of relevant genes during feeding by A. lucorum.

5.
J Hazard Mater ; 465: 133095, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056270

RESUMO

In recent years, various materials have been used to adsorb and remove perfluoroalkyl compounds from water. However, most of these materials have limited applications due to their high cost, complex synthesis, inadequate selectivity and sensitivity, and, even worse, the possibility of introducing secondary pollution. Here, under mild conditions, we prepared an inexpensive imidazolium chloride and nitrogen-rich polymer (TAGX-Cl) with a high cationic loading rate and a high yield (>82%). The adsorbent exhibits excellent pH tolerance (pH=1-9) and achieves nearly 99.9% removal of nine perfluoroalkyl carboxylic acids (PFCAs) within 120 min. Experimental data and theoretical simulations confirmed that synergistic electrostatic interactions, hydrogen bonds, and P-π interactions control the adsorptive ability of TAGX-Cl. This work provides a practical strategy for PFCAs removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA