Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Mater ; 22(4): 429-433, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36894771

RESUMO

The lowest-lying fundamental excitation of an incommensurate charge-density-wave material is believed to be a massless phason-a collective modulation of the phase of the charge-density-wave order parameter. However, long-range Coulomb interactions should push the phason energy up to the plasma energy of the charge-density-wave condensate, resulting in a massive phason and fully gapped spectrum1. Using time-domain terahertz emission spectroscopy, we investigate this issue in (TaSe4)2I, a quasi-one-dimensional charge-density-wave insulator. On transient photoexcitation at low temperatures, we find the material strikingly emits coherent, narrowband terahertz radiation. The frequency, polarization and temperature dependences of the emitted radiation imply the existence of a phason that acquires mass by coupling to long-range Coulomb interactions. Our observations underscore the role of long-range interactions in determining the nature of collective excitations in materials with modulated charge or spin order.

2.
Phys Chem Chem Phys ; 25(15): 10313-10324, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987913

RESUMO

To date, the manipulation of intermolecular nonconjugation interactions in organic crystals is still a great challenge due to the complexity of weak intermolecular interactions. Here we designed molecules substituted by ß-methylselenyl on naphtho[1,2-b:5,6-b']dithiophene and anthra[2,3-b:6,7-b']dithiophene, respectively (anti-ß-MS-NDT, anti-ß-MS-ADT), which together with anti-ß-MS-BDT synthesized experimentally all exhibited 2D brickwork π-stacking. Moreover, their maximum molecular carrier mobilities reached 3.30 and 16.46 cm2 V-1 s-1. These results indicated that the substitution of ß-methylselenyl could be a strategy to directionally adjust the parent herringbone stacking into 2D brickwork π-stacking. Hirshfeld surface analysis and symmetry-adapted perturbation theory (SAPT) were used to investigate the nonconjugated interactions in the pitched π-stacking formed by the ß-methylthio-substituted acenedithiophene derivatives and the 2D brickwork π-stacking of the ß-methylselenyl-substituted ones; wherein, the steric hindrance caused by the introduction of the substituents promoted Csp2-Csp2⋯π interactions to replace Csp2-H⋯π to stabilize the face-to-face stacking. Moreover, by calculating the decomposition energy of the intermediate state model of the molecular stacking mode that may exist in the replacement conversion process, it was found that the energy of this intermediate state was larger than that of the actual ones, finally confirming the inevitability of the actual existence in this stacking. In addition, because of the reduction in intensity of the special vibration modes, it could be found that the ß-methylselenyl substitution showed better phonon assistance than ß-methylthio substitution in terms of dynamic disorder. This study is a further step toward fully understanding the relationship between intermolecular interactions and regulation of the molecular stacking.

3.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125711

RESUMO

Organic semiconductors (OSCs) are widely used in flexible display, renewable energy, and biosensors, owing to their unique solid-state physical and optoelectronic properties. Among the abundant crystal library of OSCs, asymmetric aryl anthracene derivatives have irreplaceable advantages due to the interplay between their distinct π-conjugated geometry and molecular stacking as well as efficient light emission and charge transport properties that can be simultaneously utilized. However, the poor crystal stacking patterns of most asymmetric molecules limit their utility as excellent OSCs. Thus, it is crucial to clarify the structural features that enable the extremely ordered stacking and favorable electronic structure of asymmetric anthracene derivatives to become high-performance OSCs. This contribution investigates the charge transport properties of a series of asymmetric aryl anthracene derivatives to reveal the modulation factors of the molecular stacking modes and to explore the structural factors, which are beneficial to charge transport. The analysis demonstrated that the vinyl-linker facilitated the injection of hole carriers, and the alkynyl-linker effectively reduces the reorganization energy. Importantly, the linear polarizability and permanent dipole moment of a single molecule play a vital regulation to molecular stacking modes and the transfer integral of the dimer. The "head-to-head stacking" motif shows a compact stacking pattern and the maximum 2D anisotropic mobility more than 10 cm2 V-1 s-1. These findings sharpen our understanding of the charge transport properties in asymmetric organic semiconductors and are essential for developing a diverse range of high-performance OSC materials.

4.
Phys Rev Lett ; 126(23): 233402, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170160

RESUMO

The modulation and engineering of the free-electron wave function bring new ingredients to the electron-matter interaction. We consider the dynamics of a free-electron passing by a two-level system fully quantum mechanically and study the enhancement of interaction from the modulation of the free-electron wave function. In the presence of resonant modulation of the free-electron wave function, we show that the electron energy loss and gain spectrum is greatly enhanced for a coherent initial state of the two-level system. Thus, a modulated electron can function as a probe of the atomic coherence. We further find that distantly separated two-level atoms can be entangled through interacting with the same free electron. Effects of modulation-induced enhancement can also be observed using a dilute beam of modulated electrons.

5.
Phys Rev Lett ; 127(6): 066401, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420349

RESUMO

We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle, which is an integer multiple of 2π, there can be nontrivial one-dimensional point-gap topology along the direction of the disclination lines. This results in disclination-induced non-Hermitian skin effects. By doubling a non-Hermitian Hamiltonian to a Hermitian three-dimensional chiral topological insulator, we show that the disclination-induced skin modes are zero modes of the effective surface Dirac fermion(s) in the presence of a pseudomagnetic flux induced by disclinations. Furthermore, we find that our results have a field theoretic description, and the corresponding geometric response actions (e.g., the Euclidean Wen-Zee action) enrich the topological field theory of non-Hermitian systems.

6.
Phys Chem Chem Phys ; 23(22): 12679-12691, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036996

RESUMO

High-performance organic semiconductor materials based on the small aromatic anthracene-core and its derivatives develop comparatively slowly due to the lack of a profound understanding of the influence of chemical modifications on their charge-transfer properties. Herein, the electronic properties and the charge transport characteristics of several typical anthracene-based derivatives with aryl groups substituted at the 2,6-site are systematically investigated by multi-scale simulation methods including Molecular Dynamics (MD) simulation and the full quantum nuclear tunneling model in the framework of density functional theory (DFT). To elucidate the origin of different charge transport properties of these anthracene-based materials, analysis of the molecular stacking and noncovalent intermolecular interaction caused by different substituents was carried out. The results indicate that the electron and hole injection capabilities and the air oxidation stability of the anthracene derivatives are greatly improved when the size of the aryl substituent increases. In addition, the incorporation of 2,6-site aryl substituents can inhibit the stretching vibration of the anthracene-core during charge transport, and allow molecular packing along the long axis (a-axis of DPA and BDBFAnt, and c-axis of dNaAnt) with almost no slippage, and the main transport channels remain unchanged, exhibiting more isotropic 2D transport properties. It should be emphasized that the edge-to-face dimers with smallest dihedral angles are closest to the thermally stable dimer model, with relatively larger π-orbital distributions in transmission channels (dimer 1, 2) and the largest spatial overlap, resulting in the largest hole transfer integral in DPA (Vh1/h2 = 57 meV). Although the analysis of the thermal disorder effect shows a phonon scattering effect, the maximum hole mobility of the DPA molecule is still as high as 1.5 cm2 V-1 s-1.

7.
Proc Natl Acad Sci U S A ; 115(43): 10938-10942, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297431

RESUMO

The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.

8.
Phys Rev Lett ; 124(16): 167601, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383931

RESUMO

In the context of recent experimental observations of an unexpectedly large thermal Hall conductivity, κ_{H}, in insulating La_{2}CuO_{4} (LCO) and SrTiO_{3} (STO), we theoretically explore conditions under which acoustic phonons can give rise to such a large κ_{H}. Both the intrinsic and extrinsic contributions to κ_{H} are large in proportion to the dielectric constant, ε, and the "flexoelectric" coupling, F. While the intrinsic contribution is still orders of magnitude smaller than the observed effect, an extrinsic contribution proportional to the phonon mean-free path appears likely to account for the observations, at least in STO. We predict a larger intrinsic κ_{H} in certain insulating perovskites.

9.
Phys Rev Lett ; 125(3): 033603, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745404

RESUMO

We demonstrate a non-Hermitian topological effect that is characterized by having complex eigenvalues only in the edge states of a topological material, despite the fact that the material is completely uniform. Such an effect can be constructed in any topological structure formed by two gapped subsystems, e.g., a quantum spin-Hall system, with a suitable non-Hermitian coupling between the spins. The resulting complex-eigenvalued edge state is robust against defects due to the topological protection. In photonics, such an effect can be used for the implementation of topological lasers, in which a uniform pumping provides gain only in the edge lasing state. Furthermore, such a topological lasing model is reciprocal and is thus compatible with standard photonic platforms.

10.
Phys Rev Lett ; 121(10): 106402, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30240246

RESUMO

According to a widely held paradigm, a pair of Weyl points with opposite chirality mutually annihilate when brought together. In contrast, we show that such a process is strictly forbidden for Weyl points related by a mirror symmetry, provided that an effective two-band description exists in terms of orbitals with opposite mirror eigenvalue. Instead, such a pair of Weyl points convert into a nodal loop inside a symmetric plane upon the collision. Similar constraints are identified for systems with multiple mirrors, facilitating previously unreported nodal-line and nodal-chain semimetals that exhibit both Fermi-arc and drumhead surface states. We further find that Weyl points in systems symmetric under a π rotation composed with time reversal are characterized by an additional integer charge that we call helicity. A pair of Weyl points with opposite chirality can annihilate only if their helicities also cancel out. We base our predictions on topological crystalline invariants derived from relative homotopy theory, and we test our predictions on simple tight-binding models. The outlined homotopy description can be directly generalized to systems with multiple bands and other choices of symmetry.

11.
Phys Rev Lett ; 121(19): 196401, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468621

RESUMO

We show that the Nielsen-Ninomiya no-go theorem still holds on a Floquet lattice: there is an equal number of right-handed and left-handed Weyl points in a three-dimensional Floquet lattice. However, in the adiabatic limit, where the time evolution of the low-energy subspace is decoupled from the high-energy subspace, we show that the bulk dynamics in the low-energy subspace can be described by Floquet bands with extra left- or right-handed Weyl points, despite the no-go theorem. Assuming adiabatic evolution of two bands, we show that the difference of the number of right-handed and left-handed Weyl points equals twice the winding number of the adiabatic Floquet operator over the Brillouin zone. Based on these findings, we propose a realization of purely left- or right-handed Weyl particles on a 3D lattice using a Hamiltonian obtained through dimensional reduction of a four-dimensional quantum Hall system. We argue that the breakdown of the adiabatic approximation on the surface facilitates unusual closed orbits of wave packets in an applied magnetic field, which traverse alternatively through the low-energy and high-energy sector of the spectrum.

12.
Phys Rev Lett ; 119(14): 147001, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053291

RESUMO

Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave as Wilson loops of 3D momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus Fermi surfaces and spiral spin textures. We construct such a model with two torus Fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal lines as the superconductivity is developed.

13.
Phys Rev Lett ; 115(7): 076802, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317739

RESUMO

We study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. The spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

14.
J Agric Food Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021257

RESUMO

The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 µM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.

15.
Chem Sci ; 15(12): 4403-4415, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516067

RESUMO

It is important to develop materials with environmental stability and long device shelf life for use in organic field-effect transistors (OFETs). The microscopic, molecular-level nature of the organic layer in OFETs is not yet well understood. The stability of geometric and electronic structures and the regulation of the external electric field (EEF) on the charge transport properties of four typical homogeneous organic semiconductors (OSCs) were investigated by density functional theory (DFT). The results showed that under the EEF, the structural changes in single-bond linked oligomers were more sensitive and complex than those of condensed molecules, and there were non-monotonic changes in their reorganization energy (λ) during charge transport under an EEF consisting of decreases and then increases (Series D). The change in λ under an EEF can be preliminarily and qualitatively determined by the change in the frontier molecular orbitals (FMOs) - the number of C-atoms with nonbonding characteristics. For single-bonded molecules, the transfer integral is basically unchanged under a low EEF, but it will greatly change at a high EEF. Because the structure and properties of the molecule will greatly change under different EEFs, the effect of an EEF should be fully considered when determining the intrinsic mobility of OSCs, which could cause a deviation 0.3-20 times in mobility. According to detailed calculations, one heterogeneous oligomer, TH-BTz, was designed. Its λ can be greatly reduced under an EEF, and the change in the energy level of FMOs can be adjusted to different degrees. This study provides a reasonable idea for verification of the experimental mobility value and also provides guidance for the directional design of stable high-mobility OSCs.

16.
Zhonghua Bing Li Xue Za Zhi ; 42(3): 163-7, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23769434

RESUMO

OBJECTIVE: To compare the pathologic diagnosis and immunohistochemistry of small cell malignant tumors (SCMT) of bone using both core needle biopsy and surgical specimen. METHODS: Seventy-seven cases of SCMT with core needle biopsies and surgical specimens available were respectively analyzed by histologic examination and immunohistochemical study, with literature review. RESULTS: The male-to-female ratio was 48:29. The age of the patients ranged from 6 to 73 years. The tumors studied included Ewing sarcoma/PNET (n = 38), myeloma (n = 23), lymphoma (n = 10), small cell osteosarcoma (n = 2), small cell carcinoma (n = 2) and mesenchymal chondrosarcoma (n = 2). The tumors involved limbs, axial skeleton and flat bones. Microscopically, the tumors shared similar histology, with small round cells and spindly cells arranged in diffuse sheets. The pathologic diagnosis by core needle biopsies correlated with that by surgical specimens in 84.4% (65/77) of the cases. CONCLUSIONS: SCMT represents a heterogeneous group of malignancy. Correlations with clinicoradiologic findings and application of ancillary investigations including immunohistochemistry and molecular study are important for definitive diagnosis. Pathologic diagnosis using core needle biopsies shows good results and provides useful information for surgical planning.


Assuntos
Biópsia com Agulha de Grande Calibre , Neoplasias Ósseas/diagnóstico , Tumores Neuroectodérmicos Primitivos Periféricos/diagnóstico , Plasmocitoma/diagnóstico , Sarcoma de Ewing/diagnóstico , Antígeno 12E7 , Adolescente , Adulto , Idoso , Antígenos CD/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Carcinoma de Células Pequenas/diagnóstico , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Moléculas de Adesão Celular/metabolismo , Criança , Feminino , Humanos , Linfoma/diagnóstico , Linfoma/metabolismo , Linfoma/patologia , Masculino , Pessoa de Meia-Idade , Tumores Neuroectodérmicos Primitivos Periféricos/metabolismo , Tumores Neuroectodérmicos Primitivos Periféricos/patologia , Proteínas de Fusão Oncogênica/metabolismo , Osteossarcoma/diagnóstico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Plasmocitoma/metabolismo , Plasmocitoma/patologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Estudos Retrospectivos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Vimentina/metabolismo , Adulto Jovem
17.
Nat Commun ; 14(1): 720, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759623

RESUMO

While chirality imbalances are forbidden in conventional lattice systems, non-Hermiticity can effectively avoid the chiral-doubling theorem to facilitate 1D chiral dynamics. Indeed, such systems support unbalanced unidirectional flows that can lead to the localization of an extensive number of states at the boundary, known as the non-Hermitian skin effect (NHSE). Recently, a generalized (rank-2) chirality describing a 2D robust gapless mode with dispersion ω = kxky has been introduced in crystalline systems. Here we demonstrate that rank-2 chirality imbalances can be established in a non-Hermitian (NH) lattice system leading to momentum-resolved chiral dynamics, and a rank-2 NHSE where there are both edge- and corner-localized skin modes. We then experimentally test this phenomenology in a 2-dimensional topolectric circuit that implements a NH Hamiltonian with a long-lived rank-2 chiral mode. Using impedance measurements, we confirm the rank-2 NHSE in this system, and its manifestation in the predicted skin modes and a highly unusual momentum-position locking response. Our investigation demonstrates a circuit-based path to exploring higher-rank chiral physics, with potential applications in systems where momentum resolution is necessary, e.g., in beamformers and non-reciprocal devices.

18.
Chin J Integr Med ; 29(2): 127-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401751

RESUMO

OBJECTIVE: To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms. METHODS: MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry. RESULTS: GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05). CONCLUSION: GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.


Assuntos
Mieloma Múltiplo , Wolfiporia , Camundongos , Animais , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Proteína X Associada a bcl-2/metabolismo , Camundongos Nus , Apoptose , Mitocôndrias/metabolismo
19.
Opt Express ; 20(22): 24280-7, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187190

RESUMO

ZnO-nanofilm/Si-micropillar p-n nanoheterostructure arrays were prepared by growing n-type ZnO onto a p-type nanoporous Si pillar array. Its current-voltage characteristics of nanoheterostructure showed good rectifying behavior with onset voltage of ~1.5 V, forward current density of ~28.7 mA/cm(2) at 2.5 V, leakage current density of ~0.15 mA/cm(2) and rectifying ratio of ~121 at ± 2.5 V. The electron transport across nanohetreostructure obeys the trap-charge-limit current model. Moreover, strong white light electroluminescence from ZnO-nanofilm/Si-micropillar light-emitting diode (LED) has been achieved, which could open up possibilities to build new ZnO/Si-based highly efficient solid-state lighting devices.

20.
Phys Rev Lett ; 109(26): 265302, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368576

RESUMO

In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site interaction, and the sign of hopping is inverted by insetting a π flux in each triangle of the kagome lattice so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired superfluid order will remain. We establish that this trion superfluid exists in a broad temperature regime until the temperature is increased to the same order of hopping and then the system turns into normal phases. Finally, we show that time-of-flight measurement of the momentum distribution and its noise correlation can be used to distinguish these three phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA