RESUMO
The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.
Assuntos
Adenilil Ciclases/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Humanos , Relação Estrutura-AtividadeRESUMO
The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.
Assuntos
Ligantes , Conformação Proteica , Receptores Opioides mu , Humanos , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Ligação Proteica , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Imagem Individual de MoléculaRESUMO
Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.
Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , MicroRNAs , Proteínas Mitocondriais , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
The protein tyrosine phosphatase SHP2 mediates multiple signal transductions in various cellular pathways, controlled by a variety of upstream inputs. SHP2 dysregulation is causative of different types of cancers and developmental disorders, making it a promising drug target. However, how SHP2 is modulated by its different regulators remains largely unknown. Here, we use single-molecule fluorescence resonance energy transfer and molecular dynamics simulations to investigate this question. We identify a partially open, semiactive conformation of SHP2 that is intermediate between the known open and closed states. We further demonstrate a "multiple gear" regulatory mechanism, in which different activators (e.g., insulin receptor substrate-1 and CagA), oncogenic mutations (e.g., E76A), and allosteric inhibitors (e.g., SHP099) can shift the equilibrium of the three conformational states and regulate SHP2 activity to different levels. Our work reveals the essential role of the intermediate state in fine-tuning the activity of SHP2, which may provide new opportunities for drug development for relevant cancers.
Assuntos
Calgranulina A/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Piperidinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinas/metabolismo , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genéticaRESUMO
A fat-rich diet triggers obesity, and promotes cardiomyocyte injury. Till now, no prior investigations suggested a beneficial role of Isosteviol Sodium (STVNa) in cardiac activity in high fat diet (HFD)-exposed obese rats. However, there is evidence that STVNa accelerates healing of multiple tissue injuries. Herein, we explored the underlying mechanism behind the STVNa-based protection against HFD-induced myocardial dysfunction (MCD) in a rat model of myocardial injury. We employed dosages of 1, 10, and 20 mg/kg STVNa to treat MCD in rats fed with a HFD. Based on our results, STVNa repressed MCD (as indicated by ecocardiographic analysis), myocardium function, pathological structure, and myocardial enzymes. Mechanistically, the STVNa-mediated protection against HFD-induced MCD involved inhibition of inflammation and oxidative stress. Furthermore, using Western blot analysis, we revealed that the critical members of the Sirt1/AMPK network were markedly activated in the STVNa-treated group, relative to HFD-fed controls. Collectively, these evidences suggested that the STVNa offered strong protection against HFD-induced MCD. Moreover, this effect was mediated by the activation of the Sirt1/AMPK network, which, in turn, promoted lipid metabolism.
Assuntos
Cardiomiopatias , Sirtuína 1 , Proteínas Quinases Ativadas por AMP , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Diterpenos do Tipo Caurano , Obesidade , Ratos , Sirtuína 1/metabolismo , SódioRESUMO
The α2 adrenergic receptors (α2ARs) are G protein-coupled receptors (GPCRs) that respond to adrenaline and noradrenaline and couple to the Gi/o family of G proteins. α2ARs play important roles in regulating the sympathetic nervous system. Dexmedetomidine is a highly selective α2AR agonist used in post-operative patients as an anxiety-reducing, sedative medicine that decreases the requirement for opioids. As is typical for selective αAR agonists, dexmedetomidine consists of an imidazole ring and a substituted benzene moiety lacking polar groups, which is in contrast to ßAR-selective agonists, which share an ethanolamine group and an aromatic system with polar, hydrogen-bonding substituents. To better understand the structural basis for the selectivity and efficacy of adrenergic agonists, we determined the structure of the α2BAR in complex with dexmedetomidine and Go at a resolution of 2.9 Å by single-particle cryo-EM. The structure reveals the mechanism of α2AR-selective activation and provides insights into Gi/o coupling specificity.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/química , Dexmedetomidina/química , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacologia , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Insetos/citologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Receptores Adrenérgicos alfa 2/genética , Simpatolíticos/química , Simpatolíticos/farmacologiaRESUMO
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Assuntos
Microtúbulos , Tubulina (Proteína) , Trifosfato de Adenosina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismoRESUMO
Pathological hypertrophy contributes to heart failure and there is not quite effective treatment to invert this process. Isosteviol has been shown to protect the heart against ischaemia-reperfusion injury and isoproterenol-induced cardiac hypertrophy, but its effect on pressure overload-induced cardiac hypertrophy is still unknown. Pressure overload induced by transverse aortic constriction (TAC) causes cardiac hypertrophy in rats to mimic the pathological condition in human. This study examined the effects of isosteviol sodium (STVNa) on cardiac hypertrophy by the TAC model and cellular assays in vitro. Cardiac function test, electrocardiogram analysis and histological analysis were conducted. The effects of STVNa on calcium transient of the adult rat ventricular cells and the proliferation of neonatal rat cardiac fibroblasts were also studied in vitro. Cardiac hypertrophy was observed after 3-week TAC while the extensive cardiac dysfunction and electronic remodelling were observed after 9-week TAC. Both STVNa and sildenafil (positive drug) treatment reversed the two process, but STVNa appeared to be more superior in some aspects and did not change calcium transient considerably. STVNa also reversed TAC-induced cardiac fibrosis in vivo and TGF-ß1-induced fibroblast proliferation in vitro. Moreover, STVNa, but not sildenafil, reversed impairment of the autonomic nervous system induced by 9-week TAC.
Assuntos
Aorta/fisiopatologia , Cardiotônicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/diagnóstico por imagem , Aorta/efeitos dos fármacos , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Peso Corporal/efeitos dos fármacos , Cardiomegalia/fisiopatologia , Constrição , Eletrocardiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fibrose , Frequência Cardíaca/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pressão , Ratos WistarRESUMO
The ß2-adrenergic receptor (ß2AR) is a G-protein-coupled receptor (GPCR) that responds to the hormone adrenaline and is an important drug target in the context of respiratory diseases, including asthma. ß2AR function can be regulated by post-translational modifications such as phosphorylation and ubiquitination at the C-terminus, but access to the full-length ß2AR with well-defined and homogeneous modification patterns critical for biochemical and biophysical studies remains challenging. Here, we report a practical synthesis of differentially modified, full-length ß2AR based on a combined native chemical ligation (NCL) and sortase ligation strategy. An array of homogeneous samples of full-length ß2ARs with distinct modification patterns, including a full-length ß2AR bearing both monoubiquitination and octaphosphorylation modifications, were successfully prepared for the first time. Using these homogeneously modified full-length ß2AR receptors, we found that different phosphorylation patterns mediate different interactions with ß-arrestin1 as reflected in different agonist binding affinities. Our experiments also indicated that ubiquitination can further modulate interactions between ß2AR and ß-arrestin1. Access to full-length ß2AR with well-defined and homogeneous modification patterns at the C-terminus opens a door to further in-depth mechanistic studies into the structure and dynamics of ß2AR complexes with downstream transducer proteins, including G proteins, arrestins, and GPCR kinases.
Assuntos
Processamento de Proteína Pós-Traducional , Receptores Adrenérgicos beta 2/química , Regulação Alostérica , Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Humanos , Fosforilação , Receptores Adrenérgicos beta 2/metabolismo , Staphylococcus aureus/enzimologia , Ubiquitinação , beta-Arrestina 1/metabolismoRESUMO
Cardiomyocyte dysfunction is attributed to excess oxidative damage, but the molecular pathways involved in this process have not been completely elucidated. Evidence indicates that isosteviol sodium (STVNa) has cardioprotective effects. We therefore aimed to identify the effect of STVNa on cardiomyocytes, as well as the potential mechanisms involved in this process. We established two myocardial hypertrophy models by treating H9c2 cells with high glucose (HG) and isoprenaline (ISO). Our results showed that STVNa reduced H9c2 mitochondrial damage by attenuating oxidative damage and altering the morphology of mitochondria. The results also indicated that STVNa had a positive effect on HG- and ISO-induced damages via mitochondrial biogenesis. The protective effects of STVNa on cardiomyocytes were associated with the regulation of the SIRT1/PGC-1α signalling pathway. Importantly, the effects of STVNa involved different methods of regulation in the two models, which was confirmed by experiments using an inhibitor and activator of SIRT1. Together, the results provide the basis for using STVNa as a therapy for the prevention of cardiomyocyte dysfunctions.
Assuntos
Cardiotônicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/fisiologia , Animais , Carbazóis/farmacologia , Linhagem Celular , DNA Mitocondrial/metabolismo , DNA Mitocondrial/fisiologia , DNA Mitocondrial/ultraestrutura , Glucose/toxicidade , Hipertrofia , Isoproterenol/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Sirtuína 1/efeitos dos fármacosRESUMO
The sodium salt of isosteviol (STVNa) is a beyerane diterpene synthesized through acid hydrolysis of stevioside. STVNa improves multiple types of tissue injuries. However, it is not known how isosteviol sodium affects high-fat and high cholesterol diet (HFD)-induced kidney. Therefore, in this study we examined the potential molecular mechanism underlying STVNa mediated protective effect against high fat/high cholesterol-induced kidney dysfunction in HFD-induced kidney injury. Sprague-Dawley (SD) rats were allocated into six groups: the normal group, HFD group and HFD treated with three doses of STVNa, fenofibrate treatment group. The results indicated that HFD induced kidney injury evident by a 60% increase in serum creatinine (CRE) leves. In addition, there was a significant accumulation of triglycerides (approx. 60%), fatty acids (approx. 50%) and total cholesterol (approx. 2.5 fold) in the kidneys. STVNa inhibited HFD-induced kidney injury evident by reducing the increased levels of serum CRE. Specifically, STVNa attenuated HFD-induced kidney injury by inhibiting inflammation, oxidative stress, and apoptosis. These findings indicate that STVNa has a therapeutic potential for HFD-induced kidney dysfunction. The mechanisms of this pharmacological effect are through the inhibition of inflammation, oxidative stress and apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Diterpenos do Tipo Caurano/farmacologia , Inflamação/prevenção & controle , Nefropatias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Recent data show that cardiac hypertrophy contributes substantially to the overall heart failure burden. Mitochondrial dysfunction is a common feature of cardiac hypertrophy. Recent studies have reported that isosteviol inhibits myocardial ischemia-reperfusion injury in guinea pigs and H9c2 cells. This work investigated the protective mechanisms of isosteviol sodium (STVNa) against isoproterenol (Iso)-induced cardiac hypertrophy. We found that STVNa significantly inhibited H9c2 cell and rat primary cardiomyocyte cell surface, restored mitochondrial membrane potential (MMP) and morphological integrity, and decreased the expression of mitochondrial function-related proteins Fis1 and Drp1. Furthermore, STVNa decreased reactive oxygen species (ROS) levels and upregulated the expression of antioxidant factors, Thioredoxin 1 (Trx1) and Peroxiredoxin 2 (Prdx2). Moreover, STVNa restored the activity of histone deacetylase 4 (HDAC4) in the nucleus. Together, our data show that STVNa confers protection against Iso-induced myocardial hypertrophy primarily through the Prdx2/ROS/Trx1 signaling pathway. Thus, STVNA is a potentially effective treatment for cardiac hypertrophy in humans.
Assuntos
Cardiomegalia/tratamento farmacológico , Diterpenos do Tipo Caurano/farmacologia , Histona Desacetilases/metabolismo , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Histona Desacetilases/genética , Humanos , Isoproterenol/efeitos adversos , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacosRESUMO
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Assuntos
Isquemia Encefálica/genética , Proteoma/genética , Proteômica , Traumatismo por Reperfusão/genética , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Córtex Cerebral , Cromatografia Líquida , Modelos Animais de Doenças , Metabolismo Energético/genética , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Proteoma/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Espectrometria de Massas em TandemRESUMO
We report the identification of 14 novel anticancer agents through established computational anticancer cell-based models. Among these novel hits, the compound G03 exhibits stronger inhibitory effects on the proliferation of MCF-7, HepG2, MDA-MB-231, HCTT116, and HeLa as compared with the FDA-approved sorafenib, with IC50 values of 4.61, 3.20, 2.82, 2.98, and 2.90 µM, respectively. The tubulin protein was validated to be a target of G03 using SPR, tubulin polymerization, immunofluorescence, and western blot assays. G03 is a novel structurally simple anticancer agent with unusual microtubule-stabilizing effects. Our study demonstrated the identification of bioactive small molecules by computational phenotypic modeling, which represents a feasible route toward innovative leads for chemical biology and medicinal chemistry.
Assuntos
Antineoplásicos/farmacologia , Bioensaio , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Interface Usuário-ComputadorRESUMO
BACKGROUND: Stevioside, isolated from the herb Stevia rebaudiana, has been widely used as a food sweetener all over the world. Isosteviol Sodium (STV-Na), an injectable formulation of isosteviol sodium salt, has been proved to possess much greater solubility and bioavailability and exhibit protective effects against cerebral ischemia injury in vivo by inhibiting neuron apoptosis. However, the underlying mechanisms of the neuroprotective effects STV-Na are still not completely known. In the present study, we investigated the effects of STV-Na on neuronal cell death caused by hypoxia in vitro and its underlying mechanisms. METHODS: We used cobalt chloride (CoCl2) to expose mouse neuroblastoma N2a cells to hypoxic conditions in vitro. RESULTS: Our results showed that pretreatment with STV-Na (20 µM) significantly attenuated the decrease of cell viability, lactate dehydrogenase release and cell apoptosis under conditions of CoCl2-induced hypoxia. Meanwhile, STV-Na pretreatment significantly attenuated the upregulation of intracellular Ca2+ concentration and reactive oxygen species production, and inhibited mitochondrial depolarization in N2a cells under conditions of CoCl2-induced hypoxia. Furthermore, STV-Na pretreatment significantly downregulated expressions of nitric oxide synthase, interleukin-1ß, tumor necrosis factor-α, interleukin-6, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signalings in N2a cells under conditions of CoCl2-induced hypoxia. CONCLUSIONS: Taken together, STV-Na protects neural cells against hypoxia-induced apoptosis through inhibiting MAPK and NF-κB pathways.
Assuntos
Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cobalto/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Previous reports have indicated that isosteviol sodium (STVNa) has neuroprotective effects against acute focal cerebral ischemia in rats; however, the exact underlying mechanisms and ideal treatment paradigm are not known. To find a reasonable method for STVNa administration and to determine its possible therapeutic mechanisms, we characterized the protective effects of single-dose and multiple-dose STVNa in cerebral ischemic/reperfusion (I/R) injury in rats. Single and multiple treatments with 10 mg/kg STVNa were administered intraperitoneally after injury to investigate its neuroprotective effects. Neurobehavioral deficits and infarct volume were assessed 7 d after ischemia. Both STVNa treatments reduced infarct volumes, improved neurological behaviors, preserved cellular morphology, enhanced neuronal survival, and suppressed cell apoptosis. Multiple treatments performed better than single treatment. Reactive astrogliosis was apparent at 7 d after injury and was significantly inhibited by multiple STVNa treatments but not single treatment. These results indicate that STVNa exerts neuroprotection by different mechanisms in the acute and delayed phases of I/R. Specifically, STVNa neuroprotection in the delayed phase of injury was found to be accompanied with the inhibition of astrogliosis.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Diterpenos do Tipo Caurano/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologiaRESUMO
A series of novel chalcone-rivastigmine hybrids were designed, synthesized, and tested in vitro for their ability to inhibit human acetylcholinesterase and butyrylcholinesterase. Most of the target compounds showed hBChE selective activity in the micro- and submicromolar ranges. The most potent compound 3 exhibited comparable IC50 to the commercially available drug (rivastigmine). To better understand their structure activity relationships (SAR) and mechanisms of enzyme-inhibitor interactions, kinetic and molecular modeling studies including molecular docking and molecular dynamics (MD) simulations were carried out. Furthermore, compound 3 blocks the formation of reactive oxygen species (ROS) in SH-SY5Y cells and shows the required druggability and low cytotoxicity, suggesting this hybrid is a promising multifunctional drug candidate for Alzheimer's disease (AD) treatment.
Assuntos
Chalconas/farmacologia , Inibidores da Colinesterase/farmacologia , Rivastigmina/análogos & derivados , Rivastigmina/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/toxicidade , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/toxicidade , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rivastigmina/síntese química , Rivastigmina/toxicidade , Relação Estrutura-AtividadeRESUMO
The development of cardiac hypertrophy is a complicated process, which undergoes a transition from compensatory hypertrophy to heart failure, and the identification of new biomarkers and targets for this disease is greatly needed. Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model. After the induction of hypertrophy with ISO treatment in H9c2 cells, cell surface area, cell viability, cellular reactive oxygen species (ROS), and nitric oxide (NO) levels were tested. Our data showed that the cell viability, mitochondrial membrane potential, and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells. It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells. These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells, and our findings may have important implications for the management of this disease.
Assuntos
Cardiomegalia/etiologia , Isoproterenol/farmacologia , Óxido Nítrico/análise , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/fisiologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Óxido Nítrico/fisiologia , Peroxirredoxinas/análise , Ratos , Tiorredoxinas/análiseRESUMO
BACKGROUND: Isosteviol sodium (STVNa) has been reported to have neuroprotective effects against ischemia/reperfusion (I/R) injury in rats. Furthermore, recanalization treatments, including thrombolytic therapy, have several limitations. Excessive inflammation and apoptosis contribute to the pathogenesis of ischemic brain damage. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is critical to these processes and is associated with cerebral ischemia. Therefore, we studied the potential therapeutic effects and mechanisms of STVNa on permanent cerebral ischemia in mice. METHODS: Permanent middle cerebral artery occlusion (pMCAO) was established via the suture method, followed by intravenous STVNa (7.5, 15, 30, 45, and 60 mg/kg). Neurobehavioral deficits, infarct volume, and histology were examined 24 hours after cerebral ischemia. In addition, the messenger RNA (mRNA) expression of NF-κB-related genes was detected using real-time quantitative polymerase chain reaction (qPCR). RESULTS: STVNa (30 mg/kg) had significant neuroprotective effects 24 hours after pMCAO, including the reduction of the infarct volume and the improvement of the neurological severity score. Immunohistochemistry demonstrated that STVNa significantly increased the number of restored neurons and decreased the number of astrocytes. qPCR also demonstrated that the mRNA expression of inhibitor of nuclear factor kappa-B kinase-α, inhibitor of nuclear factor kappa-B kinase-ß, NF-κB, inhibitor of NF-κB-α, tumor necrosis factor-α, interleukin-1 beta, Bcl2-associated X protein, and caspase-3 were significantly downregulated, whereas B-cell CLL/lymphoma 2 mRNA was upregulated with STVNa treatment compared with vehicle. CONCLUSIONS: These findings demonstrate a neuroprotective role of STVNa during cerebral ischemia, which may result from interactions with the NF-κB signaling pathway and the associated inflammatory and apoptotic responses.
Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/prevenção & controle , Diterpenos do Tipo Caurano/uso terapêutico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Animais , Lesões Encefálicas/etiologia , Isquemia Encefálica/complicações , Caspase 3/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Exame NeurológicoRESUMO
Centrosome aberrations have been implicated in the development and progression of breast cancer. Our previous worked show that centrosomal protein 70 (Cep70) regulates breast cancer growth and metastasis. However, it remains elusive whether Cep70 is implicated in the sensitivity of the anti-microtubule drug paclitaxel in breast cancer. Here we provide evidence that Cep70 is a mediator of paclitaxel sensitivity in breast cancer. Cell proliferation assays show that Cep70 expression correlates with paclitaxel sensitivity in breast cancer cell lines. In addition, paclitaxel sensitivity varies when altering Cep70 expression level. Mechanistic studies reveal that Cep70 interacts with tubulin, and promotes the ability of paclitaxel to stimulate microtubule assembly. These data demonstrate that Cep70 mediates paclitaxel sensitivity in breast cancer.