Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(29): 11471-11480, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31306004

RESUMO

Complexes with weakly coordinating ligands are often formed in chemical reactions and can play key roles in determining the reactivity, particularly in catalytic reactions. Using time-resolved X-ray absorption fine structure (XAFS) spectroscopy in combination with time-resolved IR (TRIR) spectroscopy and tungsten hexacarbonyl, W(CO)6, we are able to structurally characterize the formation of an organometallic alkane complex, determine the W-C distances, and monitor the reactivity with silane to form an organometallic silane complex. Experiments in perfluorosolvents doped with xenon afford initially the corresponding solvated complex, which is sufficiently reactive in the presence of Xe that we can then observe the coordination of Xe to the metal center, providing a unique insight into the metal-xenon bonding. These results offer a step toward elucidating the structure, bonding, and chemical reactivity of transient species by X-ray absorption spectroscopy, which has sensitivity to small structural changes. The XAFS results indicate that the bond lengths of metal-alkane (W-H-C) bond in W(CO)5(heptane) as 3.07 (±0.06) Å, which is longer than the calculated W-C (2.86 Å) for binding of the primary C-H, but shorter than the calculated W-C (3.12 Å) for the secondary C-H. A statistical average of the calculated W-C alkane bond lengths is 3.02 Å, and comparison of this value indicates that the value derived from the XAFS measurements is averaged over coordination of all C-H bonds consistent with alkane chain walking. Photolysis of W(CO)6 in the presence of HSiBu3 allows the conversion of W(CO)5(heptane) to W(CO)5(HSiBu3) with an estimated W-Si distance of 3.20 (±0.03) Å. Time-resolved TRIR and XAFS experiments following photolysis of W(CO)6 in perfluoromethylcyclohexane (PFMCH) allows the characterization of W(CO)5(PFMCH) with a W-F distance of 2.65 (±0.06) Å, and doping PFMCH with Xe allows the characterization of W(CO)5Xe with a W-Xe bond length of 3.10 (±0.02) Å.

2.
Inorg Chem ; 58(15): 9785-9795, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314505

RESUMO

A transition-metal-based donor-(linker)-acceptor system can produce long-lived charge transfer excited states using visible excitation wavelengths. The ground- and excited-state photophysical properties of a series of [ReCl(CO)3(dppz-(linker)-TPA)] complexes, with varying donor and acceptor energies, have been systematically studied using spectroscopic techniques (both vibrational and electronic) supported by computational chemistry. The long-lived excited state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), and time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Modulation of the donor and acceptor energies results in changes of the 3ILCT lifetime by 1 order of magnitude, ranging from 6.1(±1) µs when a diphenylamine donor is used to 0.6(±0.2) µs when a triazole linker and triphenylamine donor is used. The excited-state lifetime may be rationalized by consideration of the driving force within the framework of Marcus theory and appears insensitive to the nature of the linker.

3.
J Am Chem Soc ; 140(5): 1842-1854, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29290110

RESUMO

Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp' complexes stabilizes the d8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

4.
Phys Chem Chem Phys ; 20(2): 752-764, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29139504

RESUMO

Varying the degree of thionation of a series of naphthalene diimide (NDI) and naphthalic imide (NI) phenothiazine dyad systems affords a systematic approach for tuning the system's donor-acceptor energy gap. Each dyad was compared to model NDI/NI systems and fully characterised through single crystal X-ray diffraction, NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), transient absorption spectroscopy (TA), time-resolved infra-red spectroscopy (TRIR) and DFT. The measurements reveal that thionation increases both electron affinity of the NDI/NI acceptor dyad component and accessibility of the singly or doubly reduced states. Furthermore, FTIR and TA measurements show that excited state behaviour is greatly affected by thionation of the NDI and induces a decrease in the lifetime of the excited states formed upon the creation of charge-separated states.

5.
Inorg Chem ; 56(21): 12967-12977, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984448

RESUMO

The ground- and excited-state properties of a series of [ReCl(CO)3(dppz)] complexes with substituted donor groups were investigated. Alteration of donor-acceptor communication through modulation of torsional angle and the number and nature of the donor substituents allowed the effects on the photophysical properties to be characterized though both computational and spectroscopic techniques, including time-dependent density functional theory and resonance Raman and time-resolved infrared spectroscopy. The ground-state optical properties show significant variation as a result of donor group modulation, with an increased angle between the donor and acceptor blue-shifting and depleting the intensity of the lowest-energy transition, which is consistently intraligand charge transfer (ILCT) in nature. However, across all complexes studied there was minimal perturbation to the excited-state properties and dynamics. Three excited states on the picosecond, nanosecond, and microsecond time scales were observed in all cases, corresponding to 1ILCT, 3ππ*, and 3ILCT, respectively.

6.
Inorg Chem ; 55(10): 4710-9, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27119791

RESUMO

The synthesis of two bipyridine-hexa-peri-hexabenzocoronene (bpy-HBC) ligands functionalized with either (t)Bu or C12H25 and their Re(I) tricarbonyl chloride complexes are reported and their electronic properties investigated using spectroscopic and computational methods. The metal complexes show unusual properties, and we observed the formation of a long-lived excited state using time-resolved infrared spectroscopy. Depending on the solvent, this appears to be of the form Rebpy(•-)HBC(•+) or a bpy-centered π,π* state. TD-DFT calculations support the donor-acceptor charge transfer character of these systems, in which HBC is the donor and bpy is the acceptor. The ground state optical properties are dominated by the HBC chromophore with additional distinct transitions of the complexes, one associated with MLCT 450 nm (ε > 17 000 L mol(-1) cm(-1)) and another with a HBC/metal to bpy charge transfer, termed the MLLCT band (373 nm, ε = 66 000 L mol(-1) cm(-1)). These assignments are also supported by resonance Raman spectroscopy.

7.
Inorg Chem ; 55(23): 12238-12253, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934422

RESUMO

A new 2-pyridyl-1,2,3-triazole (pytri) ligand, TPA-pytri, substituted with a triphenylamine (TPA) donor group on the 5 position of the pyridyl unit was synthesized and characterized. Dichloroplatinum(II), bis(phenylacetylide)platinum(II), bromotricarbonylrhenium(I), and bis(bipyridyl)ruthenium(II) complexes of this ligand were synthesized and compared to complexes of pytri ligands without the TPA substituent. The complexes of unsubstituted pytri ligands show metal-to-ligand charge-transfer (MLCT) absorption bands involving the pytri ligand in the near-UV region. These transitions are complemented by intraligand charge-transfer (ILCT) bands in the TPA-pytri complexes, resulting in greatly improved visible absorption (λmax = 421 nm and ϵ = 19800 M-1 cm-1 for [Pt(TPA-pytri)Cl2]). The resonance Raman enhancement patterns allow for assignment of these absorption bands. The [Re(TPA-pytri)(CO)3Br] and [Pt(TPA-pytri)(CCPh)2] complexes were examined with time-resolved infrared spectroscopy. Shifts in the C≡C and C≡O stretching bands revealed that the complexes form states with increased electron density about their metal centers. [Pt(TPA-pytri)Cl2] is unusual in that it is emissive despite the presence of deactivating d-d states, which prevents emission from the unsubstituted pytri complex.

8.
Inorg Chem ; 54(24): 11697-708, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26630550

RESUMO

The photophysical properties of a number of ruthenium complexes of the general structure [Ru(L1)(L2)(NCS)2], related to the prominent solar cell dye [Ru(dcb)2(NCS)2] (dcb = 4,4'-dicarboxylato-2,2'-bipyridine) are investigated. For L1 = dcb and dmb (dmb = 4,4'-dimethyl-2,2'-bipyridine), several variations of L2 show very little difference in the lowest energy absorption peak. Resonance Raman and density functional theory calculations have been used to assign the corresponding transitions as {Ru(NCS)2} → dcb with significant contributions of the NCS ligands. Transient absorption, time-resolved infrared, and transient resonance Raman spectroscopic techniques were used to probe the photophysics of the complexes and relatively short-lived {Ru(NCS)2} → dcb/dpb (dpb = 4,4'-diphenylethenyl-2,2'-bipyridine) excited states were observed with the exception of [Ru(dcb)(dab)(NCS)2] (dab = 4,4'-dianthracenethenyl-2,2'-bipyridine), which showed a long-lived excited state assigned as ligand centered charge separated.

9.
J Am Chem Soc ; 136(24): 8614-25, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24823385

RESUMO

Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

10.
Inorg Chem ; 53(6): 3126-40, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24559053

RESUMO

A series of dipyrido[3,2-a:2',3'-c]phenazine (dppz)-based ligands with electron-withdrawing substituents and their [Re(CO)3(L)Cl] and [Re(CO)3(L)(py)]PF6 complexes have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) and time-resolved infrared (TRIR) spectroscopic techinques in conjunction with computational chemistry as well as electrochemical studies, emission, and absorption of ground and excited states. DFT (B3LYP) frequency calculations show good agreement with nonresonant Raman spectra, which allowed these to be used to identify phenanthroline, phenazine, and delocalized modes. These band assignments were used to establish the nature of chromophores active in resonance Raman spectra, probed with wavelengths between 350.7 and 457.9 nm. X-ray crystallography of [Re(CO)3(dppzBr2)Cl] and [Re(CO)3(dppzBr)(py)]PF6 showed these crystallize in space groups triclinic P1 and monoclinic P2(1/n), respectively. Electrochemical studies showed that substituents have a strong effect on the phenazine MO, changing the reduction potential by 200 mV. Transient absorption studies showed that generally the [Re(CO)3(L)(py)]PF6 complexes had longer lifetimes than the corresponding [Re(CO)3(L)Cl] complexes; the probed state is likely to be (3)π → π* (phz) in nature. TR(2) spectra of the ligands provided a marker for the triplet π → π* state, and the TR(2) spectra of the complexes suggest an intraligand (IL) π,π* state for [Re(CO)3(L)(py)](+) complexes, and a potentially mixed IL/MLCT state for [Re(CO)3(L)Cl] complexes. TRIR spectroscopy is more definitive with THEXI state assignments, and analysis of the metal-carbonyl region (1800-2100 cm(-1)) on the picosecond and nanosecond time scales indicates the formation of MLCT(phen/phz) states for all [Re(CO)3(L)Cl] complexes, and IL π → π* (phen) states for all [Re(CO)3(L)(py)](+) complexes, with all but [Re(CO)3(dppzBr(CF3))(py)](+) showing some contribution from an MLCT(phen) state also.

11.
Inorg Chem ; 53(3): 1339-54, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24444107

RESUMO

The donor-acceptor ligands 11-(4-diphenylaminophenyl)dipyrido[3,2-a:2',3'-c]phenazine (dppz-PhNPh2) and 11-(4-dimethylaminophenyl)dipyrido[3,2-a:2',3'-c]phenazine (dppz-PhNMe2), and their rhenium complexes, [Re(CO)3X] (X = Cl(-), py, 4-dimethylaminopyridine (dmap)), are reported. Crystal structures of the two ligands were obtained. The optical properties of the ligands and complexes are dominated by intraligand charge transfer (ILCT) transitions from the amine to the dppz moieties with λabs = 463 nm (ε = 13 100 M(-1) cm(-1)) for dppz-PhNMe2 and with λabs = 457 nm (ε = 16 900 M(-1) cm(-1)) for dppz-PhNPh2. This assignment is supported by CAM-B3LYP TD-DFT calculations. These ligands are strongly emissive in organic solvents and, consistent with the ILCT character, show strong solvatochromic behavior. Lippert-Mataga plots of the data are linear and yield Δµ values of 22 D for dppz-PhNPh2 and 20 D for dppz-PhNMe2. The rhenium(I) complexes are less emissive, and it is possible to measure resonance Raman spectra. These data show relative band intensities that are virtually unchanged from λexc = 351 to 532 nm, consistent with a single dominant transition in the visible region. Resonance Raman excitation profiles are solvent sensitive; these data are modeled using wavepacket theory yielding reorganization energies ranging from 1800 cm(-1) in toluene to 6900 cm(-1) in CH3CN. The excited state electronic absorption and infrared spectroscopy reveal the presence of dark excited states with nanosecond to microsecond lifetimes that are sensitive to the ancillary ligand on the rhenium. These dark states were assigned as phenazine-based (3)ILCT states by time-resolved infrared spectroscopy. Time-resolved infrared spectroscopy shows transient features in which Δν(CO) is approximately -7 cm(-1), consistent with a ligand-centered excited state. Evidence for two such states is seen in mid-infrared transient spectra.

12.
Proc Natl Acad Sci U S A ; 107(47): 20178-83, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21048088

RESUMO

Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp'Rh(CO) (Cp(') = Î·(5)-C(5)H(5) or η(5)-C(5)Me(5)). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp'Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH(3) groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane's chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH(3) group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers.


Assuntos
Acetatos/química , Anidridos Acéticos/química , Alcanos/química , Modelos Moleculares , Compostos Organometálicos/química , Ródio/química , Cristalografia por Raios X , Cinética , Estrutura Molecular , Análise Espectral
13.
Chem Commun (Camb) ; 58(10): 1546-1549, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35014645

RESUMO

Ninhydrin bis-acetals give access to 8-ring lactones, benzocyclo-butenes and spirocyclic orthoanhydrides through photoextrusion and tandem photoextrusion reactions. Syntheses of fimbricalyxlactone B, isoshihunine and numerous biologically-relevant heterocycles show the value of the methods, while TA-spectroscopy and TD-DFT studies provide mechanistic insights on their wavelength dependence.

14.
Photochem Photobiol Sci ; 10(8): 1355-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21698328

RESUMO

The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)](2) complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.


Assuntos
Complexos de Coordenação/química , Substâncias Intercalantes/química , Fenazinas/química , Poli dA-dT/química , Polidesoxirribonucleotídeos/química , Rênio/química , Absorção , Pareamento de Bases , Transporte de Elétrons , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Fatores de Tempo
15.
Inorg Chem ; 50(23): 11877-89, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22043811

RESUMO

The photochemistry and photophysics of the cationic molecular dyad, 5-{4-[rhenium(I)tricarbonylpicoline-4-methyl-2,2'-bipyridine-4'-carboxyamidyl]phenyl}-10,15,20-triphenylporphyrinatopalladium(II) ([Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)]) have been investigated. The single crystal X-ray structure for the thiocyanate analogue, [Re(CO)(3)(NCS)Bpy-PdTPP], exhibits torsion angles of 69.1(9)°, 178.1(7)°, and 156.8(9)° between porphyrin plane, porphyrin-linked C(6)H(4) group, amide moiety, and Bpy, respectively. Steady-state photoexcitation (λ(ex) = 520 nm) of [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] in dimethylformamide (DMF) results in substitution of Pic by bromide at the Re(I)Bpy core. When [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] is employed as a photocatalyst for the reduction of CO(2) to CO in DMF/NEt(3) solution with λ(ex) > 420 nm, 2 turnovers (TNs) CO are formed after 4 h. If instead, a two-component mixture of PdTPP sensitizer and mononuclear [Re(CO)(3)(Pic)Bpy][PF(6)] catalyst is used, 3 TNs CO are formed. In each experiment however, CO only forms after a slight induction period and during the concurrent photoreduction of the sensitizer to a Pd(II) chlorin species. Palladium(II) meso-tetraphenylchlorin, the hydrogenated porphyrin analogue of PdTPP, has been synthesized independently and can be substituted for PdTPP in the two-component system with [Re(CO)(3)(Pic)Bpy][PF(6)], forming 9 TNs CO. An intramolecular electron transfer process for the dyad is supported by cyclic voltammetry and steady-state emission studies, from which the free energy change was calculated to be ΔG(ox)* = -0.08 eV. Electron transfer from Pd(II) porphyrin to Re(I) tricarbonyl bipyridine in [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] was monitored using time-resolved infrared (TRIR) spectroscopy in the ν(CO) region on several time scales with excitation at 532 nm. Spectra were recorded in CH(2)Cl(2) with and without NEt(3). Picosecond TRIR spectroscopy shows rapid growth of bands assigned to the π-π* excited state (2029 cm(-1)) and to the charge-separated state (2008, 1908 cm(-1)); these bands decay and the parent recovers with lifetimes of 20-50 ps. Spectra recorded on longer time scales (ns, µs, and seconds) show the growth and decay of further species with ν(CO) bands indicative of electron transfer to Re(Bpy).

16.
Inorg Chem ; 50(13): 6093-106, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21635016

RESUMO

The syn and anti isomers of the bi- and trinuclear Re(CO)(3)Cl complexes of 2,3,8,9,14,15-hexamethyl-5,6,11,12,17,18-hexaazatrinapthalene (HATN-Me(6)) are reported. The isomers are characterized by (1)H NMR spectroscopy and X-ray crystallography. The formation of the binuclear complex from the reaction of HATN-Me(6) with 2 equiv of Re(CO)(5)Cl in chloroform results in a 1:1 ratio of the syn and anti isomers. However, synthesis of the trinuclear complex from the reaction of HATN-Me(6) with 3 equiv of Re(CO)(5)Cl in chloroform produces only the anti isomer. syn-{(Re(CO)(3)Cl)(3)(µ-HATN-Me(6))} can be synthesized by reacting 1 equiv of Re(CO)(5)Cl with syn-{(Re(CO)(3)Cl)(2)(µ-HATN-Me(6))} in refluxing toluene. The product is isolated by subsequent chromatography. The X-ray crystal structures of syn-{(Re(CO)(3)Cl)(2)(µ-HATN-Me(6))} and anti-{(Re(CO)(3)Cl)(3)(µ-HATN-Me(6))} are presented both showing severe distortions of the HATN ligand unit and intermolecular π stacking. The complexes show intense absorptions in the visible region, comprising strong π → π* and metal-to-ligand charge-transfer (MLCT) transitions, which are modeled using time-dependent density functional theory (TD-DFT). The energy of the MLCT absorption decreases from mono- to bi- to trinuclear complexes. The first reduction potentials of the complexes become more positive upon binding of subsequent Re(CO)(3)Cl fragments, consistent with changes in the energy of the MLCT bands and lowering of the energy of relevant lowest unoccupied molecular orbitals, and this is supported by TD-DFT. The nature of the excited states of all of the complexes is also studied using both resonance Raman and picosecond time-resolved IR spectroscopy, where it is shown that MLCT excitation results in the oxidation of one rhenium center. The patterns of the shifts in the carbonyl bands upon excitation reveal that the MLCT state is localized on one rhenium center on the IR time scale.

17.
Chem Sci ; 11(32): 8600-8609, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123120

RESUMO

Ruthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)2(dppz)]2+ in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at ca. 1700 cm-1 for the guanine radical cation and a band centered at ca. 515 nm in the TrA for the reduced ruthenium complex. It is found that efficient electron transfer requires that the complex be intercalated at a G-C base-pair containing site. Significantly, changes in the nucleobase vibrations of the TRIR spectra induced by the bound excited state before electron transfer takes place are used to identify preferred intercalation sites in mixed-sequence oligodeoxynucleotides and natural DNA. Interestingly, with natural DNA, while it is found that quenching is inefficient in the picosecond range, a slower electron transfer process occurs, which is not found with the mixed-sequence duplex-forming oligodeoxynucleotides studied.

18.
J Am Chem Soc ; 131(10): 3583-92, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19236096

RESUMO

A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragments (3)Fe(CO)(4) and (3)Fe(CO)(3) formed upon photolysis of Fe(CO)(5). Experimental data are provided for reactions in liquid n-heptane and in supercritical Xe (scXe) and Ar (scAr). Measurement of the temperature dependence of the rate of decay of (3)Fe(CO)(4) to produce (1)Fe(CO)(4)L (L = heptane or Xe) shows that these reactions have significant activation energies of 5.2 (+/-0.2) and 7.1 (+/-0.5) kcal mol(-1) respectively. Nonadiabatic transition state theory is used to predict rate constants for ligand addition, based on density functional theory calculations of singlet and triplet potential energy surfaces. On the basis of these results a new mechanism (spin-crossover followed by ligand addition) is proposed for these spin forbidden reactions that gives good agreement with the new experimental results as well as with earlier gas-phase measurements of some addition rate constants. The theoretical work accounts for the different reaction order observed in the gas phase and in some condensed phase experiments. The reaction of (3)Fe(CO)(4) with H(2) cannot be easily probed in n-heptane since conversion to (1)Fe(CO)(4)(heptane) dominates. scAr doped with H(2) provides a unique environment to monitor this reaction--Ar cannot be added to form (1)Fe(CO)(4)Ar, and H(2) addition is observed instead. Again theory accounts for the reactivity and also explains the difference between the very small activation energy measured for H(2) addition in the gas phase (Wang, W. et al. J. Am. Chem. Soc. 1996, 118, 8654) and the larger values obtained here for heptane and Xe addition in solution.

19.
Chem Commun (Camb) ; (11): 1401-3, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19259601

RESUMO

Short wavelength photolysis of (Tp)Re(CO)(3) (Tp = tris(pyrazol-1-yl)borate) at low-temperature in cyclopentane yielded (Tp)Re(CO)(2)(cyclopentane), an alkane complex with three nitrogen ligands that was characterised by NMR spectroscopy.

20.
Inorg Chem ; 48(16): 7787-93, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19618936

RESUMO

The displacement of eta(2)-coordinated ligands from the photolytically generated CpMn(CO)(2)L and BzCr(CO)(2)L [Cp = eta(5)-C(5)H(5), Bz = eta(6)-C(6)H(6), L = 2,3-dihydrofuran (DHF), furan] complexes by pyridine has been studied. The displacement reactions span a wide range of time scales from microseconds to hours and were studied using a range of time-resolved IR spectroscopic techniques. The substitution reactions follow a dissociative pathway and the measured activation enthalpies provide an estimate for the strength of the metal-(eta(2)-furan) and metal-(eta(2)-DHF) interactions. In these complexes, the Cr center binds both ligands weaker than the Mn center. There is a approximately 6-10 kcal/mol difference in the binding enthalpies of eta(2)-furan and eta(2)-DHF to both metals suggesting that this difference is the result of a partial loss of resonance energy in the case of the aromatic furan ligand upon interaction with the metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA