Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Breast Cancer Res ; 26(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167446

RESUMO

BACKGROUND: Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS: We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS: Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS: The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carcinogênese , Transformação Celular Neoplásica , Família , Linhagem Celular Tumoral , Proliferação de Células
2.
Plant Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422439

RESUMO

Phaseolus vulgaris Linn. is a widely cultivated vegetable throughout the world. From spring 2019 to 2022, green mould symptoms were observed on leaves of P. vulgaris in the greenhouse in Liaoning, China, with disease incidence of 8-75% (plants) and 6-23% (leaves). Symptoms appeared as chlorotic lesions covered with dark green mould. The infections started at the apex or margin of the leaves and then spread inward with a characteristic "V" shape. Lesions exhibited curly morphology. 15 leaf samples with typical symptoms were collected from 5 different greenhouses. A total of 75 (5 replicates of each sample) leaf tissues (0.5 cm × 0.5 cm) were selected from the boundary between diseased and healthy parts. These samples were surface sterilized in 0.5% NaClO formin, rinsed 3 times in sterile distilled water and subsequently incubated at 28℃ on potato dextrose agar (PDA) supplemented with streptomycin (50 µg/ml). Numerous morphologically uniform colonies had been purified, with no other fungi observed. Afterwards, the strains were subcultured on malt extract agar (MEA). Colonies on MEA reached 70 to 80 mm diam after 14 days, smoke-grey to pale olivaceous-grey, woolly, sometimes radially wrinkled. The mycelia were pale olivaceous-grey, with hyphae measuring 1-5 µm wide (n = 20). The conidiophores were solitary or in groups of 2 to 5, and measured 50-280(-350) × 2.5-4 µm (n = 20), with 2-7 septa. The conidiogenous cells exhibited a cylindrical-oblong morphology and measured 10-44 × 5 µm (n = 20), with 0-2 septa, and the loci frequently thickened. The conidia were catenate in densely branched chains, ellipsoid to obovoid, smooth, and measured 2.5-5 × 2-3 µm (n = 50), with 0-4 septa. The morphological characteristics were similar to Cladosporium tenuissimum (Zhang 2003). The representative isolate KZ-19 was selected for molecular identification. The rDNA-ITS, translation elongation factor 1-α and actin genes were amplified, sequenced, and the resulting sequence data were submitted to GenBank (ITS: OQ931048; EF-1α: OQ954495; ACT: OQ954496). The BLAST results exhibited a 99 to 100% similarity with the sequences of C. tenuissimum type strain CBS 125995(ITS: HM148197; EF-1α: HM148442; ACT: HM148687). Furthermore, a multi-locus phylogenetic tree was constructed using the PhyloSuite (v 1. 2. 2) software, which revealed that the strains were most closely related to C. tenuissimum (Zhang et al. 2020). Based on both morphological and molecular characteristics, KZ-19 was finally identified as C. tenuissimum (Bensch 2012). Pathogenicity testing was performed on healthy 1-month-old P. vulgaris plants by inoculating the spore suspension (1×106 conidia/ml) of KZ-19 onto leaf surfaces, while control plants were simulated inoculated with sterile water, and five pots were used for each treatment. The test was performed under field conditions of 16-28°C (temperature) and 24-56% (relative humidity). Chlorotic lesions became evident within 2 days of inoculation, followed by the appearance of green mold on leaves after 7 days. No symptoms were observed in the control group. To fulfill Koch's postulates, the pathogen was re-isolated from three inoculated leaves. The morphological identification of re-isolated pathogens was similar to that of originally isolated pathogens. No infection was observed in non-inoculated control. To the best of our knowledge, this is the first report of C. tenuissimum causing green mould on P. vulgaris. As a ubiquitous saprobic hyphomycete, C. tenuissimum has been implicated in leaf mold in Punica granatum and Trifolium repens, larch bud blight, and strawberry blossom blight in previous years (He et al. 1987; Zhang et al. 2003; Zheng et al. 2010; Nam et al. 2015), presenting a potential threat to numerous crops. Therefore, an investigation of its distribution and pathogenic potential is essential in addition to the development of effective disease management strategies.

3.
Inorg Chem ; 62(32): 13156-13164, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531143

RESUMO

A series of novel tetradentate 6/6/6 Pt(II) complexes containing an 8-phenylquinoline-benzo[d]imidazole-carbazole ligand was designed; the Pt(II) complexes could be synthesized by metalizing the corresponding ligand with K2PtCl4 in high isolated yields of 60-90%. Experimental and theoretical studies suggested that the ligand modification of the quinoline moieties of the Pt(II) complexes could tune their electrochemical, photophysical, and excited-state properties. Notably, all the Pt(II) complexes exhibited highly electrochemical stabilities with reversible redox processes except the quasi-reversible reduction of PtYL3. The large π-conjugation of the ligand together with increased metal-to-ligand charge-transfer (3MLCT) characters in T1 states enabled the Pt(II) complexes to show broad Gaussian-type NIR emission spectra with high photoluminescence quantum efficiencies of 1.2-1.5% and short τ of 0.8-1.5 µs in dichloromethane at room temperature. This work should provide a valuable reference for the design and development of monomer NIR emitters.

4.
Exp Cell Res ; 404(1): 112580, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811903

RESUMO

Breast cancer has been identified as the most common malignant tumors among women and the morbidity of breast cancer is still increasing rapidly. MEX3A possesses important functions in the regulation of mRNAs and may be involved in a variety of human diseases including cancer, whose relationship with breast cancer is still not clear. In this study, MEX3A was identified as a potential promotor in breast cancer, whose expression was strongly higher in breast cancer tissues than normal tissues. The in vitro experiments showed that MEX3A is capable of promoting the development of breast cancer through stimulating cell proliferation, inhibiting cell apoptosis, arresting cell cycle and promoting cell migration. The functions of MEX3A were also verified in vivo. Furthermore, a combination of genechip analysis and Ingenuity pathway analysis (IPA) identified PIK3CA as a potential downstream target of MEX3A, knockdown of which executes similar inhibitory effects on breast cancer and could alleviate MEX3A-induced progression of breast cancer. In conclusion, our study unveiled, as the first time, MEX3A as a tumor promotor for breast cancer, whose function was carried out probably through the regulation of PIK3CA.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética
5.
Curr Microbiol ; 78(6): 2380-2390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33871692

RESUMO

The rhizosphere soils from 1, 3, 5, and 7 years of cucumber continuous cropping in solar-greenhouse were used as the research objects. The region of bacterial 16S rRNA was analyzed by Illumina MiSeq high-throughput sequencing technology. The effect of continuous cropping years on the microbial community structure and diversity in cucumber soil in the greenhouse was investigated. The physical and chemical properties of soil and the activities of urease and catalase were determined. The results showed that cucumber crop succession for different years affected the community composition of the bacteria at the phylum level, and the abundance of Proteobacteria, Chloroflexi, Gemmatimonadetes, Patescibacteria and Firmicutes gradually increased, while Actinobacteria in the soil significantly decreased. Among the top 15 significantly different genera, with the extension of successive years, the relative abundance of most genera in bacteria decreased after a small increase in year 3. The diversity results indicated that soil samples from continuous cropping for 7 years had the lowest community diversity. PICRUSt analysis showed a decreasing trend in soil bacterial function as the cucumber crop succession age increased. In environmental factor clustering analysis, the soil bacterial community was significantly correlated with pH, available nitrogen (AN), soil urease (SUR) and available phosphorus (AP), and the effect on the bacterial community was expressed as SUR > AP > AN > pH.


Assuntos
Cucumis sativus , Rizosfera , Bactérias/genética , Biodiversidade , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
7.
NPJ Sci Learn ; 9(1): 51, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122714

RESUMO

Applying 10 Hz (α-rate) sensory stimulation, not 5 Hz (θ-rate), prior to introducing novel speech-print pairs can reset the phase of θ oscillations and enhance associative learning. This rapid gain indicates coordinated mechanisms to regulate attentional/cognitive resources (α oscillations) and facilitate memory storage (θ oscillations) early in learning. The present findings may inform educational practices for children with reading difficulties.

8.
Heliyon ; 10(1): e23410, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169880

RESUMO

Due to the important role of tourists' behavior plays in marine protected areas (MPAs) and the increasing popularity of ecological experiential learning (EEL) journeys, this study aims to investigate whether and how EEL impact tourists' pro-environmental behavior (PEB) intentions through both emotional and cognitive pathways. To achieve this, four nature education trips with EEL content were organized, and PEB intentions of 228 tourists to MPAs were analyzed using surveys. The findings revealed that the low-effort PEB intentions of individuals under 24 years old were significantly lower compared to those of older tourists. Furthermore, EEL was positively associated with both low and high effort PEB intentions. The sense of awe acted as a mediator between EEL and low-effort PEB intentions, whereas nature connection was found to mediate the relationship between EEL and both low and high-effort PEB intentions. This study contributes to the growing body of research on the drivers of tourists PEB and provides a theoretical framework for promoting PEB intentions in MPAs.''''.

9.
Gland Surg ; 13(6): 1031-1044, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39015719

RESUMO

Background: Fluorescence-guided surgery (FGS) is a cutting-edge technology that uses near-infrared (NIR) fluorescence imaging to guide surgeons in surgery. Indocyanine green (ICG) is a fluorescent dye, which can be used for in vivo imaging of tumor cells. We aimed to explore the use of ICG fluorescence-guided technology as a rapid intraoperative margin assessment method for breast cancer surgery. In addition, we also compared the dose selection of ICG. Methods: This was a non-randomized prospective cohort study. Data were collected between August 2021 and October 2022 in the Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University. Upon specimen removal, tumor margins were immediately analyzed by ICG fluorescence detection and then sent to the pathology department for intraoperative frozen section analysis and subsequent routine pathological examination. Abnormal margin rates were calculated and compared using intraoperative frozen section analysis and under the guidance of ICG fluorescence. Results: The study included 69 cases of breast cancer patients who underwent tumor resection assisted by ICG fluorescence-guided technology, including 18 patients with a 0.5 mg/kg dose and 51 patients with a 1.0 mg/kg dose. According to the study findings, the ICG test achieved a sensitivity of 81.82% and a specificity of 75.82%. At a dose of 0.5 mg/kg, the sensitivity was 66.67% whereas the specificity was 93.33%. At the dose of 1 mg/kg, the sensitivity was 87.5%, and the specificity was 74.42%. Similarly, for intraoperative frozen section analysis, the sensitivity was 81.82%, but the specificity was enhanced to 94.83%. Positive surgical cut margin was not identified in 2/69 by ICG fluorescence and frozen section analysis respectively. Conclusions: The sensitivity of ICG fluorescence detection is comparable to that of frozen section analysis, but the specificity is poor. The sensitivity increased and the specificity decreased at 1 mg/kg compared to the 0.5 mg/kg dose. ICG fluorescence can be used as a supplementary tool for frozen section analysis. These findings support further development and clinical performance assessment of ICG fluorescence.

10.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2195-2210, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044584

RESUMO

In recent years, virological, pathological, and immunological studies need to be carried out for the emerging anti-human immunodeficiency virus (HIV) therapies such as gene therapy, broadly neutralizing antibodies, and the derived chimeric antigen receptor (CAR)-T immunotherapy, which necessitates suitable, simple, and inexpensive small-animal models and methods for accurate quantification of the viral genome in the HIV-1 infected. In our research, the HIV-∆ENV-Jurkat-EGFP-mCherry cell line was engineered through the infection with a dual-labelled HIV pseudovirus. A nested quantitative PCR (nested-qPCR) method with the cellular genome as the integrated standard was established for the quantification of HIV proviral copies. We administered intravenous injections of healthy human peripheral blood mononuclear cell (PBMC) into NOD/Prkdcscid/IL2rgnull (NPG) mice. To verify engraftment kinetics, we analyzed the percentages of hCD45+, hCD3+, hCD4+, and hCD8+ cells in the peripheral blood of hu-PBMC-NPG mice. To evaluate HIV-1 infection in hu-PBMC-NPG mice, we inoculated these mice with HIV NL4-3-NanoLuc by intraperitoneal (IP) injection. We then monitored the luciferase expression by the small animal imaging system and measured the viral load in the spleen by qPCR. The infiltration of human PBMCs in mice was detected 3-5 weeks after intravenous injection, and the percentage of hCD45 in humanized mouse PBMCs were more than 25% five weeks after IP inoculation. The expression of the virus-associated luciferase protein was detected by luciferase imaging 27 days post infection. Moreover, the viral total DNA, RNA, and proviral DNA copies reached 18 000 copies/106 cells, 15 000 copies/µg RNA, and 15 000 copies/106 cells, respectively, in the mouse spleen. Taken together, we reported a convenient method for building a simple humanized mouse model of HuPBMC-NPG/severe combined immunodeficiency (SCID) by intravenous injection with hu-PBMCs without advanced surgical skills and irradiation. Furthermore, we established a convenient method for the efficient determination of proviral DNA to assess HIV replication in vivo, viral reservoir sizes, and efficacy of novel anti-HIV therapies including CAR-T immunotherapy and gene therapy.


Assuntos
DNA Viral , Modelos Animais de Doenças , Infecções por HIV , HIV-1 , Provírus , Animais , HIV-1/genética , HIV-1/imunologia , Camundongos , Humanos , Provírus/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , DNA Viral/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Leucócitos Mononucleares/imunologia , Carga Viral
11.
Foods ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272417

RESUMO

The extraction of total flavonoids from Hylotelephium spectabile (Boreau) H. Ohba (H. spectabile) leaves was studied through the use of a double enzyme-assisted ultrasonic method, and the extraction process was optimized using the Box-Behnken design. Eight different macroporous resins were screened for purification in single-factorial experiments, and the flavonoid compounds in the extract of H. spectabile leaves were identified using HPLC-MS. Through the evaluation of the total reducing capacity and capacity for reducing 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), hydroxyl radicals (·OH), and 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), the in vitro antioxidant activities of the crude extracts of the total flavonoids and purified total flavonoids of H. spectabile leaves were investigated. The results showed that the most efficient conditions for flavonoid extraction were an ultrasonic extraction time of 60 min, an ethanol concentration of 35%, a liquid-to-material ratio of 20:1 mL/g, and an amount of enzyme (cellulose/pectinase = 1:1) of 1.5%, forming H. spectabile powder. Under these conditions, the total flavonoid extraction rate in the H. spectabile leaf extract was 4.22%. AB-8 resin showed superior performance in terms of purification, and the optimal adsorption and desorption times were 1.5 h and 3 h, respectively. The recommended parameters for purification included a liquid volume of 5.5 BV, a flow rate of 1.2 BV/min, a pH of 5, and a concentration of 0.8 mg/mL. The observed order for reducing capacity was ascorbic acid (VC) > rutin > purified total flavonoids > crude extract of total flavonoids. The purified total flavonoid extract from H. spectabile showed a good scavenging ability against DPPH, ·OH, and ABTS·+, suggesting strong antioxidant activity. Therefore, this study can serve as technical support and reference data for the further development and utilization of H. spectabile resources.

12.
Adv Mater ; 36(7): e2308039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37802505

RESUMO

The buried interface of the perovskite layer has a profound influence on its film morphology, defect formation, and aging resistance from the outset, therefore, significantly affects the film quality and device performance of derived perovskite solar cells. Especially for FAPbI3 , although it has excellent optoelectronic properties, the spontaneous transition from the black perovskite phase to nonperovskite phase tends to start from the buried interface at the early stage of film formation then further propagate to degrade the whole perovskite. In this work, by introducing ─NH3 + rich proline hydrochloride (PF) with a conjugated rigid structure as a versatile medium for buried interface, it not only provides a solid α-phase FAPbI3 template, but also prevents the phase transition induced degradation. PF also acts as an effective interfacial stress reliever to enhance both efficiency and stability of flexible solar cells. Consequently, a champion efficiency of 24.61% (certified 23.51%) can be achieved, which is the highest efficiency among all reported values for flexible perovskite solar cells. Besides, devices demonstrate excellent shelf-life/light soaking stability (advanced level of ISOS stability protocols) and mechanical stability.

13.
Am J Cancer Res ; 13(8): 3500-3516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693125

RESUMO

Insulinoma-associated protein-1 (INSM1), which is highly expressed in various neuroendocrine tumors, functions as a zinc finger transcription factor capable of regulating the biological behavior of tumor cells. However, its specific role in breast cancer remains unclear. This study aims to investigate the role and mechanism of INSM1 in breast cancer. A total of 158 cohorts were recruited to examine the expression of INSM1 in breast cancer tissues and their corresponding adjacent normal tissues using immunohistochemistry. Follow-up data, along with clinical and pathological information, were collected to analyze the correlation between INSM1 expression and survival outcomes in breast cancer patients. Additionally, we investigated the impact of INSM1 on breast cancer cell proliferation, migration, and aggregation. To further explore the regulatory effect of INSM1 knockdown on breast cancer tumor growth, we utilized a xenograft mouse model. The results revealed that INSM1 was significantly overexpressed in breast cancer patients and correlated with prognosis. Knockdown of INSM1 notably impaired the malignant biological effects of breast cancer cells and inhibited the growth of xenograft tumors in nude mice. Importantly, our data also suggests an interaction between INSM1 and S-phase kinase-associated protein 2 (SKP2), which in turn regulates C-MYC, thereby affecting the p-ERK pathway. Our study provides the first evidence demonstrating the contribution of INSM1 to tumor formation and growth in breast cancer. Furthermore, we found that INSM1 positively regulates C-MYC and the p-ERK pathway by interacting with SKP2 during breast cancer development. Collectively, these findings highlight INSM1 as a promising target for breast cancer treatment.

14.
Adv Ther ; 40(9): 4004-4023, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422893

RESUMO

INTRODUCTION: Lymph node metastasis is a cause of poor prognosis in breast cancer. Mass spectrometry-based proteomics aims to map the protein landscapes of biological samples and profile tumors more comprehensively. Here, proteomics was employed to identify differentially expressed proteins (DEPs) that were associated with lymph node metastasis. METHODS: Tandem mass tag (TMT) quantitative proteomic approaches were applied for extensive profiling of conditioned medium of MDA-MB-231 and MCF7 cell lines and serums of patients who did or did not have lymph node metastasis, and DEPs were analyzed by bioinformatics. Furthermore, potential secreted or membrane proteins MUC5AC, ITGB4, CTGF, EphA2, S100A4, PRDX2, and PRDX6 were selected for verification in 114 tissue microarray samples of breast cancer using the immunohistochemical method. The relevant data was analyzed and processed by independent sample t test, chi-square test, or Fisher's exact test using SPSS 22.0 software. RESULTS: In the conditioned medium of MDA-MB-231 cell lines, 154 proteins were upregulated, while 136 were downregulated compared to those of MCF7. In the serum of patients with breast cancer and lymph node metastasis, 17 proteins were upregulated, and 5 proteins were downregulated compared to those without lymph node metastasis. Furthermore, according to tissue verification, CTGF, EphA2, S100A4, and PRDX2 were associated with breast cancer lymph node metastasis. CONCLUSION: Our study provides a new perspective for the understanding of the role of DEPs (especially CTGF, EphA2, S100A4, and PRDX2) in the development and metastasis of breast cancer. They could become potential diagnostic and prognostic biomarkers and therapeutic targets.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Metástase Linfática , Neoplasias da Mama/patologia , Biomarcadores Tumorais , Proteômica/métodos , Meios de Cultivo Condicionados , Prognóstico
15.
Foods ; 11(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35885374

RESUMO

Epigallocatechin gallate (EGCG) has many excellent qualities such as its antitumor, antiradiation and anti-oxidation properties, but its application is limited because its oral bioavailability is low and stability is poor. In this paper, zein and gum arabic (GA) were used as wall materials to prepare Zein-GA complex nanoparticles for encapsulating and protecting the EGCG. The particle size of Zein-GA-EGCG complex nanoparticles ranged from 128.03-221.23 nm, and the EGCG encapsulation efficiency reached a maximum of 75.23% when the mass ratio of zein to GA was 1:1. The FTIR and XRD results illustrated that the components of the Zein-GA-EGCG complex nanoparticles interacted by electrostatic, hydrogen bonding, and hydrophobic interactions. The EGCG release rate of Zein-GA-EGCG nanoparticles (16.42%) was lower than that of Zein-EGCG (25.52%) during gastric digestion, and a large amount of EGCG was released during intestinal digestion, suggesting that the Zein-GA-EGCG nanoparticles could achieve the sustained release of EGCG during in vitro digestion. Hence, using Zein-GA complexes to encapsulate EGCG effectively increased the encapsulation efficiency of EGCG and realized the purpose of sustained release during simulated gastrointestinal digestion.

16.
Yonsei Med J ; 63(3): 229-240, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35184425

RESUMO

PURPOSE: Long non-coding RNAs (lncRNAs) may act as oncogenes in small-cell lung cancer (SCLC). Exosomes containing lncRNAs released from cancer-associated fibroblasts (CAF) accelerate tumorigenesis and confer chemoresistance. This study aimed to explore the action mechanism of the CAF-derived lncRNA maternally expressed gene 3 (MEG3) on cisplatin (DDP) chemoresistance and cell processes in SCLC. MATERIALS AND METHODS: Quantitative real-time PCR was conducted to determine the expression levels of MEG3, miR-15a-5p, and CCNE1. Cell viability and metastasis were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide and invasion assays, respectively. A xenograft tumor model was developed to confirm the effect of MEG3 overexpression on SCLC progression in vivo. Relationships between miR-15a-5p and MEG3/CCNE1 were predicted using StarBase software and validated by dual luciferase reporter assay. Western blotting was used to determine protein levels. A co-culture model was established to explore the effects of exosomes on MEG3 expression in SCLC cell lines. RESULTS: MEG3 was overexpressed in SCLC tissues and cells. MEG3 silencing significantly repressed cell viability and metastasis in SCLC. High expression of MEG3 was observed in CAF-derived conditioned medium (CM) and exosomes, and promoted chemoresistance and cancer progression. Additionally, MEG3 was found to serve as a sponge of miR-15a-5p to mediate CCNE1 expression. Overexpression of miR-15a-5p and knockout of CCNE1 reversed the effects of MEG3 overexpression on cell viability and metastasis. CONCLUSION: MEG3 lncRNA released from CAF-derived exosomes promotes DDP chemoresistance via regulation of a miR-15a-5p/CCNE1 axis. These findings may provide insight into SCLC therapy.


Assuntos
Exossomos , MicroRNAs , Neoplasias , RNA Longo não Codificante , Cisplatino/farmacologia , Ciclina E , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Oncogênicas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
Front Med ; 16(2): 240-250, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416629

RESUMO

The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3'-terminal nucleotides via 2'-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2'-O-methylation at the RNA 3'-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3'-terminal 2'-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3'-terminal 2'-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3'-terminal 2'-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3'-terminal 2'-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.


Assuntos
MicroRNAs , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Camundongos , MicroRNAs/genética , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925680

RESUMO

Evidence suggests that increased microRNA-155 (miR-155) expression in immune cells enhances antitumor immune responses. However, given the reported association of miR-155 with tumorigenesis in various cancers, a debate is provoked on whether miR-155 is oncogenic or tumor suppressive. We aimed to interrogate the impact of tumor miR-155 expression, particularly that of cancer cell-derived miR-155, on antitumor immunity in breast cancer. We performed bioinformatic analysis of human breast cancer databases, murine experiments, and human specimen examination. We revealed that higher tumor miR-155 levels correlate with a favorable antitumor immune profile and better patient outcomes. Murine experiments demonstrated that miR-155 overexpression in breast cancer cells enhanced T cell influx, delayed tumor growth, and sensitized the tumors to immune checkpoint blockade (ICB) therapy. Mechanistically, miR-155 overexpression in breast cancer cells upregulated their CXCL9/10/11 production, which was mediated by SOCS1 inhibition and increased phosphorylated STAT1 (p-STAT1)/p-STAT3 ratios. We further found that serum miR-155 levels in breast cancer patients correlated with tumor miR-155 levels and tumor immune status. Our findings suggest that high serum and tumor miR-155 levels may be a favorable prognostic marker for breast cancer patients and that therapeutic elevation of miR-155 in breast tumors may improve the efficacy of ICB therapy via remodeling the antitumor immune landscape.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral
19.
Foods ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829124

RESUMO

Sweetness is an important Baijiu quality marker, but there is limited research on it. In this study, the main contributors to Baijiu sweetness were identified by "sensomics" combined with "flavoromics". A total of 43 volatile compounds (mostly esters) were found that appeared to contribute to Baijiu sweetness, through sensory-guided fractionation and compositional analysis. Correlation analysis between the volatile composition and perceived sweetness of 18 Baijiu samples with different sweet intensities identified 14 potential contributors. Additional testing verified that combining the 14 compounds reproduced Baijiu sweetness exactly, and omission testing identified ethyl hexanoate, hexyl hexanoate and ethyl 3-methylbutanoate as the major contributors to Baijiu sweetness. These findings not only broadened our understanding of Baijiu sweetness, but also highlighted the major contribution of volatile compounds to sweetness perception, knowledge which may facilitate future flavor modification of a wide variety of foods and beverages.

20.
PeerJ ; 8: e9327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607282

RESUMO

Global warming has a known impact on ecosystems but there is a lack of understanding about its impact on ecosystem processes. Net ecosystem productivity (NEP) and its components play a key part in the global carbon cycle. Analysing the impact of global warming on NEP will improve our understanding of how warming affects ecosystems. In our study, conducted in 2018, five warming treatments were manipulated (0 W, 500 W, 1000 W, 1500 W, and 3000 W) using three repetitions of far infrared open warming over a paddy field in Northeast China. NEP and its two related components, gross primary productivity (GPP) and ecosystem respiration (ER), were measured using the static chamber-infrared gas analyser method to explore the effects of different warming magnitudes on NEP. Results showed that measurement dates, warming treatments, and their interactions significantly affected NEP, ER, and GPP. Warming significantly increased NEP and its components but they showed a non-linear response to different warming magnitudes. The maximum increases in NEP and its components occurred at 1500 W warming. NEP is closely related to its components and the non-linear response of NEP may have primarily resulted from that of GPP. Gradient warming non-linearly increased GPP in the paddy field studied in Northeast China, resulting in the non-linear response of NEP. This study provides a basis for predicting the responses of carbon cycles in future climate events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA