Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
2.
Proc Natl Acad Sci U S A ; 116(45): 22556-22566, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31624123

RESUMO

The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.


Assuntos
Membrana Celular/virologia , Proteína gp41 do Envelope de HIV/química , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Membrana Celular/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/imunologia , Domínios Proteicos
3.
Nat Methods ; 14(1): 49-52, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869813

RESUMO

We engineered covalently circularized nanodiscs (cNDs) which, compared with standard nanodiscs, exhibit enhanced stability, defined diameter sizes and tunable shapes. Reconstitution into cNDs enhanced the quality of nuclear magnetic resonance spectra for both VDAC-1, a ß-barrel membrane protein, and the G-protein-coupled receptor NTR1, an α-helical membrane protein. In addition, we used cNDs to visualize how simple, nonenveloped viruses translocate their genomes across membranes to initiate infection.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Receptores de Neurotensina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Poliomielite/metabolismo , Poliomielite/virologia , Poliovirus/fisiologia , Internalização do Vírus
4.
Biochemistry ; 58(10): 1343-1353, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30724554

RESUMO

A 29-residue peptide (MP01), identified by in vitro selection for reactivity with a small molecule perfluoroaromatic, was modified and characterized using experimental and computational techniques, with the goal of understanding the molecular basis of its reactivity. These studies identified a six-amino acid point mutant (MP01-Gen4) that exhibited a reaction rate constant of 25.8 ± 1.8 M-1 s-1 at pH 7.4 and room temperature, approximately 2 orders of magnitude greater than that of its progenitor sequence and 3 orders of magnitude greater than background cysteine reactivity. MP01-Gen4 appeared to be conformationally dynamic and exhibited several properties reminiscent of larger protein molecules, including denaturant-sensitive structure and reactivity. We believe the majority of the reaction rate enhancement can be attributed to interaction of MP01-Gen4 with the perfluoroaromatic probe, which was found to stabilize a helical conformation of both MP01-Gen4 and nonreactive Cys-to-Ser or Cys-to-Ala variants. These findings demonstrate the ability of dynamic peptides to access proteinlike reaction mechanisms and the potential of perfluoroaromatic functionality to stabilize small peptide folds.


Assuntos
Estabilidade Enzimática/genética , Peptídeos/química , Peptídeos/genética , Sequência de Aminoácidos/genética , Aminoácidos/genética , Simulação por Computador , Cisteína/química , Mutação/genética , Peptídeos/síntese química , Ligação Proteica/genética , Conformação Proteica
5.
J Virol ; 90(19): 8875-90, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466419

RESUMO

UNLABELLED: An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo. Here we demonstrate that several immunizations with MPER/liposomes induce high levels of bone marrow long-lived plasma cell (LLPC) antibody production. Single-cell immunoglobulin gene retrieval analysis shows that these plasma cells are derived from a germ line repertoire of B cells with a diverse representation of immunoglobulin genes, exhibiting antigen-driven positive selection. Characterization of LLPC recombinant monoclonal antibodies (rMAbs) indicates that antigen recognition is achieved through convergence on a common epitopic focus by utilizing various complementarity-determining region H3 (CDRH3) lengths. Importantly, the vast majority of rMAbs produced from these cells lack polyreactivity yet manifest antigen specificity in the context of lipids, shaping MPER-specific paratopes through selective pressure. Taken together, these findings demonstrate that the MPER is a vaccine target with minimal risk of generating off-target autoimmunity. IMPORTANCE: A useful vaccine must generate desired long-term, antigen-specific antibody responses devoid of polyreactivity or autoreactivity. The common polyreactive features of some HIV-1 BNAbs have raised concern about elicitation of anti-MPER antibodies. Utilizing single-LLPC repertoire analysis and biophysical characterization of anti-MPER rMAbs, we show that their fine specificities require a structural fitness of the antibody combining site involving heavy and light chain variable domains shaped by somatic hypermutation and affinity maturation of B cells in the germinal center. Perhaps more importantly, our results demonstrate that the majority of MPER-specific antibodies are not inherently polyspecific and/or autoreactive, suggesting that polyreactivity of MPER-specific antibodies is separable from their antigen specificity.


Assuntos
Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Antígenos HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Plasmócitos/imunologia , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Lipídeos de Membrana/metabolismo
6.
J Biol Chem ; 288(44): 31888-901, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047898

RESUMO

Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Epitopos de Linfócito B/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Peptídeos/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Animais , Antígenos Virais/química , Antígenos Virais/genética , Linfócitos B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , HIV-1/química , HIV-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética
7.
Sci Adv ; 10(36): eado0403, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231223

RESUMO

The current standard method for amino acid signal identification in protein NMR spectra is sequential assignment using triple-resonance experiments. Good software and elaborate heuristics exist, but the process remains laboriously manual. Machine learning does help, but its training databases need millions of samples that cover all relevant physics and every kind of instrumental artifact. In this communication, we offer a solution to this problem. We propose polyadic decompositions to store millions of simulated three-dimensional NMR spectra, on-the-fly generation of artifacts during training, a probabilistic way to incorporate prior and posterior information, and integration with the industry standard CcpNmr software framework. The resulting neural nets take [1H,13C] slices of mixed pyruvate-labeled HNCA spectra (different CA signal shapes for different residue types) and return an amino acid probability table. In combination with primary sequence information, backbones of common proteins (GB1, MBP, and INMT) are rapidly assigned from just the HNCA spectrum.


Assuntos
Proteínas , Proteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Software , Aminoácidos/química , Algoritmos , Isótopos/química , Aprendizado de Máquina
8.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293057

RESUMO

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α 2 γ 2 ) to adult hemoglobin (HbA: α 2 ß 2 ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a special role in DNA binding and γ-globin gene repression. Our findings help account for some rare γ-globin gene promoter mutations that perturb BCL11A binding and lead to increased HbF in adults (hereditary persistence of fetal hemoglobin). Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

9.
Structure ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39423807

RESUMO

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α2γ2) to adult hemoglobin (HbA: α2ß2) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a different role compared to ZnF4 and 5, providing a positive entropic contribution to DNA binding and γ-globin gene repression. Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

10.
J Immunol ; 185(5): 2951-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20660709

RESUMO

The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex. In this paper, using structure-guided mutational analysis, we investigate the functional consequences of a striking asymmetry in CD3gamma and CD3delta G-strand geometries impacting ectodomain shape. The uniquely kinked conformation of the CD3gamma G-strand is crucial for maximizing Ag-triggered TCR activation and surface TCR assembly/expression, offering a geometry to accommodate juxtaposition of CD3gamma and TCR beta ectodomains and foster quaternary change that cannot be replaced by the isologous CD3delta subunit's extracellular region. TCRbeta and CD3 subunit protein sequence analyses among Gnathostomata species show that the Cbeta FG loop and CD3gamma subunit coevolved, consistent with this notion. Furthermore, restoration of T cell activation and development in CD3gamma(-/-) mouse T lineage cells by interspecies replacement can be rationalized from structural insights on the topology of chimeric mouse/human CD3epsilondelta dimers. Most importantly, our findings imply that CD3gamma and CD3delta evolved from a common precursor gene to optimize peptide/MHC-triggered alphabeta TCR activation.


Assuntos
Complexo CD3/química , Complexo CD3/fisiologia , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Animais , Complexo CD3/genética , Evolução Molecular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Ovinos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
Proc Natl Acad Sci U S A ; 106(22): 9057-62, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458040

RESUMO

A vaccine capable of stimulating protective antiviral antibody responses is needed to curtail the global AIDS epidemic caused by HIV-1. Although rarely elicited during the course of natural infection or upon conventional vaccination, the membrane-proximal ectodomain region (MPER) of the HIV-1 glycoprotein of M(r) 41,000 (gp41) envelope protein subunit is the target of 3 such human broadly neutralizing antibodies (BNAbs): 4E10, 2F5, and Z13e1. How these BNAbs bind to their lipid-embedded epitopes and mediate antiviral activity is unclear, but such information might offer important insight into a worldwide health imperative. Here, EPR and NMR techniques were used to define the manner in which these BNAbs differentially recognize viral membrane-encrypted residues configured within the L-shaped helix-hinge-helix MPER segment. Two distinct modes of antibody-mediated interference of viral infection were identified. 2F5, like 4E10, induces large conformational changes in the MPER relative to the membrane. However, although 4E10 straddles the hinge and extracts residues W672 and F673, 2F5 lifts up residues N-terminal to the hinge region, exposing L669 and W670. In contrast, Z13e1 effects little change in membrane orientation or conformation, but rather immobilizes the MPER hinge through extensive rigidifying surface contacts. Thus, BNAbs disrupt HIV-1 MPER fusogenic functions critical for virus entry into human CD4 T cells and macrophages either by preventing hinge motion or by perturbing MPER orientation. HIV-1 MPER features important for targeted vaccine design have been revealed, the implications of which extend to BNAb targets on other viral fusion proteins.


Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , HIV-1/imunologia , Internalização do Vírus , Sequência de Aminoácidos , Membrana Celular/imunologia , Membrana Celular/virologia , Espectroscopia de Ressonância de Spin Eletrônica , Epitopos/química , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , Humanos , Fusão de Membrana/imunologia , Testes de Neutralização , Ressonância Magnética Nuclear Biomolecular
12.
Commun Biol ; 5(1): 1042, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180783

RESUMO

The human (h) CEACAM1 GFCC' face serves as a binding site for homophilic and heterophilic interactions with various microbial and host ligands. hCEACAM1 has also been observed to form oligomers and micro-clusters on the cell surface which are thought to regulate hCEACAM1-mediated signaling. However, the structural basis for hCEACAM1 higher-order oligomerization is currently unknown. To understand this, we report a hCEACAM1 IgV oligomer crystal structure which shows how GFCC' face-mediated homodimerization enables highly flexible ABED face interactions to arise. Structural modeling and nuclear magnetic resonance (NMR) studies predict that such oligomerization is not impeded by the presence of carbohydrate side-chain modifications. In addition, using UV spectroscopy and NMR studies, we show that oligomerization is further facilitated by the presence of a conserved metal ion (Zn++ or Ni++) binding site on the G strand of the FG loop. Together these studies provide biophysical insights on how GFCC' and ABED face interactions together with metal ion binding may facilitate hCEACAM1 oligomerization beyond dimerization.


Assuntos
Antígenos CD , Moléculas de Adesão Celular , Antígenos CD/metabolismo , Sítios de Ligação , Carboidratos , Moléculas de Adesão Celular/metabolismo , Humanos
13.
Commun Biol ; 4(1): 360, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742094

RESUMO

Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC' face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Antígenos CD/química , Antígenos CD/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Cristalografia por Raios X , Difusão Dinâmica da Luz , Fluorometria , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
14.
Nat Struct Mol Biol ; 28(3): 258-267, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633398

RESUMO

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαi1ß1γ1 in two conformational states, resolved to resolutions of 4.1 and 4.2 Å. The structures, determined in a lipid bilayer without any stabilizing antibodies or nanobodies, reveal an extended network of protein-protein interactions at the GPCR-G protein interface as compared to structures obtained in detergent micelles. The findings show that the lipid membrane modulates the structure and dynamics of complex formation and provide a molecular explanation for the stronger interaction between GPCRs and G proteins in lipid bilayers. We propose an allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Bicamadas Lipídicas , Nanoestruturas/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/ultraestrutura , Regulação Alostérica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Micelas , Modelos Moleculares , Neurotensina/química , Neurotensina/metabolismo , Conformação Proteica , Receptores de Neurotensina/química , Transdução de Sinais
15.
Biochemistry ; 49(27): 5634-41, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20527928

RESUMO

Nck is a functionally versatile multidomain adaptor protein consisting of one SH2 and three SH3 domains. In most cases, the SH2 domain mediates binding to tyrosine-phosphorylated receptors or cytosolic proteins, which leads to the formation of larger protein complexes via the SH3 domains. Nck plays a pivotal role in T-cell receptor-mediated reorganization of the actin cytoskeleton as well as in the formation of the immunological synapses. The modular domain structure and the functionality of the individual domains suggest that they might act independently. Here we report an interesting intramolecular interaction within Nck that occurs between a noncanonical yet conserved (K/R)x(K/R)RxxS sequence in the linker between the first and second SH3 domain (SH3.1/SH3.2) and the second SH3 domain (SH3.2). Because this interaction masks the proline-rich sequence binding site of the SH3.2 domain, the intramolecular interaction is self-inhibitory. This intramolecular interaction could, at least partially, explain the remarkable specificity of Nck toward proteins with proline-rich sequences. It may prevent nonspecific low-affinity binding while keeping the site available for high-affinity bivalent ligands that can bind multiple sites in Nck. This indicates that Nck does not simply adopt a "beads on a string" architecture but incorporates a higher-order organization for improved specificity and functionality.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas/metabolismo , Domínios de Homologia de src/genética , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Transporte/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Ligantes , Fosforilação , Proteínas/genética
16.
J Biol Chem ; 284(45): 31028-37, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19755427

RESUMO

Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric alphabeta, CD3 epsilon gamma, CD3 epsilon delta, and CD3 zeta zeta subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3 epsilon lobe that they approach diagonally, adjacent to the lever-like C beta FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3 epsilon and CD3 gamma in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force ( approximately 50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.


Assuntos
Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Complexo CD3/imunologia , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Molecular , Ligação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
17.
J Am Chem Soc ; 132(9): 2945-51, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20155902

RESUMO

The primary limitation of solution state NMR with larger, highly dynamic, or paramagnetic systems originates from signal losses due to fast transverse relaxation. This is related to the high gyromagnetic ratio gamma of protons, which are usually detected. Thus, it is attractive to consider detection of nuclei with lower gamma, such as (13)C, for extending the size limits of NMR. Here, we present an approach for complete assignment of C(alpha) and N resonances in fast relaxing proteins using a C(alpha) detected 3D CANCA experiment for perdeuterated proteins. The CANCA experiment correlates alpha carbons with the sequentially adjacent and succeeding nitrogen and alpha carbons. This enables elongation of the chain of assigned residues simply by navigating along both nitrogen and carbon dimensions using a "stairway" assignment procedure. The simultaneous use of both C(alpha) and N sequential connectivities makes the experiment more robust than conventional 3D experiments, which rely solely on a single (13)C indirect dimension for sequential information. The 3D CANCA experiment, which is very useful for mainchain assignments of higher molecular weight proteins at high magnetic field, also provides an attractive alterative for smaller proteins. Two versions of the experiment are described for samples that are (13)C labeled either uniformly or at alternate positions for removing one-bond (13)C-(13)C couplings. To achieve both high resolution and sensitivity, extensive nonuniform sampling was employed. Adding longitudinal relaxation enhancement agents can allow for shorter recycling delays, decreased measuring time, or enhanced sensitivity.


Assuntos
Proteínas do Tecido Nervoso/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/normas , Peso Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Teoria Quântica , Padrões de Referência
18.
J Biomol NMR ; 47(4): 271-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20556482

RESUMO

Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding (13)C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower gamma is counteracted by the slower (15)N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the (15)N observe CAN experiment is 16% higher than in the (13)C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C(alpha) resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D(2)O. Thus, these features and the superior resolution of (15)N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.


Assuntos
Isótopos de Carbono/química , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas de Bactérias/química , Glutationa Transferase/química , Projetos de Pesquisa
19.
J Biomol NMR ; 47(1): 55-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20383561

RESUMO

We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.


Assuntos
Aminoácidos/química , Isótopos de Carbono/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes de Fusão/química , Isótopos de Carbono/metabolismo , Deutério/química , Deutério/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Nat Struct Mol Biol ; 12(6): 526-32, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15895093

RESUMO

Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five alpha-helices. Based on folding topology, the IBD is structurally related to a diverse family of alpha-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-beta. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication.


Assuntos
Substâncias de Crescimento/química , Substâncias de Crescimento/metabolismo , Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Fatores de Crescimento de Fibroblastos , Humanos , Espectroscopia de Ressonância Magnética , Mamíferos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Fases de Leitura Aberta , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA