Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 59(8): 908-922, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346924

RESUMO

Kinesin family member 11 (KIF11) is a plus end-directed kinesin indispensable for the formation of the bipolar spindle in metaphase, where it objects to the action of minus end-directed molecular motors. Here, we hypothesize that KIF11 might be a therapeutic target of breast cancer and regulated by miR-30a. Cell Counting Kit 8 assays were used to investigate cell proliferation. Invasion assays were used to survey the motility of cells. Kaplan-Meier and Cox proportional analyses were employed for this outcome study. The prognostic significance and performance of KIF11 were validated on 17 worldwide independent microarray datasets and two The Cancer Genome Atlas-Breast Invasive Carcinoma sets. microRNA was predicted targeting KIF11 through sequence alignment in microRNA.org and confirmed by coexpression analysis in human breast cancer samples. Dual-luciferase reporter assays were employed to validate the interaction between miR-30a and KIF11 further. Higher KIF11 mRNA levels and lower miR-30a were significantly associated with poor survival of breast cancer patients. Inhibition of KIF11 by small-hairpin RNA significantly reduced the proliferation and invasion capabilities of the breast cancer cells. Meanwhile, downregulation of KIF11 could enhance the cytotoxicity of adriamycin in breast cancer cell lines MCF-7 and MDA-MB-231. A population study also validated that chemotherapy and radiotherapy significantly improved survival in early-stage breast cancer patients with low KIF11 expression levels. Further bioinformatics analysis demonstrated that miR-30a could interact with KIF11 and validated by dual-luciferase reporter assays. Therefore, KIF11 is a potential therapeutic target of breast cancer. miR-30a could specifically interact with KIF11 and suppress its expression in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Cinesinas/metabolismo , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
2.
Mol Immunol ; 171: 12-21, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735126

RESUMO

Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1ß and IL-6) than with those M2-type molecules (TGF-ß1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Humanos , Adesão Celular/fisiologia , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Proliferação de Células , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 50-56, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765476

RESUMO

OBJECTIVE: To discover the relationship between matrix remodeling associated 7 (MXRA7) and acute B lymphoblastic leukemia (B-ALL), and explore the effect of MXRA7 on the biological functions of B-ALL cell line REH. METHODS: The expression of MXRA7 in blood diseases was searched and analyzed through BloodSpot database. Real-time qPCR was used to detect the expression level of MXRA7 in B-ALL cell line 697 and REH cells. Lentivirus-mediated shRNA interference technology was utilized to knock down the expression of MXRA7 in REH cells. The effects of MXRA7 on the biological functions of REH cells were studied by in vitro experiments. Cell proliferation was detected by CCK-8 assay, cell cycle was detected by PI staining, cell apoptosis was detected by Annexin V and 7-AAD staining, and the expression of apoptosis pathway related proteins was detected by Western blot. RESULTS: Database analysis showed that MXRA7 was highly expressed in B-ALL patients, and real-time qPCR results showed that MXRA7 was also highly expressed in cell lines 697 and REH cells. Knockdown of MXRA7 in REH cells inhibited the cell proliferation and increased the percentage of G0/G1 phase cells. After treatment with cytarabine, the apoptotic ratio was increased in MXRA7-impaired REH cells, and the activation of caspase-3 and caspase-9 were also increased. CONCLUSION: Knockdown of MXRA7 can reduce the malignancy of REH cells by inhibiting the cell proliferation and increasing the sensitivity of REH cells to cytarabine. These results indicate MXRA7 may be as a novel target for the treatment of B-ALL, and the potential usefulness of MXRA7 in B-ALL deserves further investigation.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Citarabina , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
4.
Blood Sci ; 5(3): 160-169, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37546710

RESUMO

Matrix remodeling is a critical process in hematopoiesis. The biology of MXRA7, as a matrix remodeling associated gene, has still not been reported in hematopoietic process. Public databases showed that MXRA7 expressed in hematopoietic stem cells, suggesting that it may be involved in hematopoiesis. We found that the amounts of megakaryocytes were lower in bone marrow and spleen from Mxra7-/- mice compared with that from wild-type mice. Knock-out of MXRA7 also reduced the amount of platelet in peripheral blood and affected the function of platelets. Knock-out of MXRA7 inhibited hematopoietic stem/progenitor cells differentiate to megakaryocytes possibly through down-regulating the expression of GATA-1 and FOG-1. Moreover, knockdown of MXRA7 in MEG-01 cells could inhibit the cell proliferation and cell apoptosis. Knockdown of MXRA7 inhibited the differentiation of MEG-01 cells and proplatelet formation through suppressing the ERK/MAPK signaling pathway and the expression of ß-tubulin. In conclusion, the current study demonstrated the potential significance of MXRA7 in megakaryocyte differentiation and platelet production. The novel findings proposed a new target for the treatment of platelet-related diseases, and much more investigations are guaranteed to dissect the mechanisms of MXRA7 in megakaryocyte differentiation and platelet production.

5.
Exp Hematol ; 125-126: 45-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37419299

RESUMO

The biology of the matrix remodeling-associated 7 (MXRA7) gene has been ill defined. Bioinformatic analysis of public data sets revealed that MXRA7 messenger RNA (mRNA) was highly expressed in acute myeloid leukemia (AML), especially acute promyelocytic leukemia (APL). High expression of MXRA7 was associated with poor overall survival of patients with AML. We confirmed that MXRA7 expression was upregulated in patients with APL and cell lines. Knockdown or overexpression of MXRA7 did not affect the proliferation of NB4 cells directly. Knockdown of MXRA7 in NB4 cells promoted drug-induced cell apoptosis, whereas overexpression of MXRA7 had no obvious influence on drug-induced cell apoptosis. Lowering MXRA7 protein levels in NB4 cells promoted all-trans retinoic acid (ATRA)-induced cell differentiation possibly through decreasing the PML-RARα level and increasing PML and RARα levels. Correspondingly, overexpression of MXRA7 showed consistent results. We also demonstrated that MXRA7 altered the expression of genes involved in leukemic cell differentiation and growth. Knockdown of MXRA7 upregulated the expression levels of C/EBPB, C/EBPD, and UBE2L6, and downregulated the expression levels of KDM5A, CCND2, and SPARC. Moreover, knockdown of MXRA7 inhibited the malignancy of NB4 cells in a non-obese diabetic-severe combined immune-deficient mice model. In conclusion, this study demonstrated that MXRA7 influences the pathogenesis of APL via regulation of cell differentiation. The novel findings about the role of MXRA7 in leukemia not only shed light on the biology of this gene but also proposed this gene as a new target for APL treatment.


Assuntos
Leucemia Promielocítica Aguda , Animais , Humanos , Camundongos , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo
6.
Front Immunol ; 9: 773, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720975

RESUMO

Matrix remodeling associated 7 (MXRA7) was first noted to co-express with a group of matrix remodeling related genes, and its biological functions had remained unclear. In this study, we investigated the presumed function of MXRA7 in a carbon tetrachloride (CCl4)-induced acute liver injury model in mice. Wild-type, MXRA7-/- mice, and mice that were pulsed with hydrodynamic injection of vehicle or MXRA7-harboring plasmids were challenged with a single dose of CCl4 for injury induction. The sera, spleens, and livers were harvested from mice for assay of cytokines/chemokines expression, cellular responses, or histological features. We found that MXRA7 deficiency alleviated, and MXRA7 overexpression aggravated liver damage in CCl4-challenged mice. FACS analysis showed that MXRA7 deficiency reduced the recruitment of neutrophils through downregulation the expression of CXCL1 and CXCL2 in liver, decreased the number of CD8+ T cells in liver and spleen, suppressed the release of IFNγ and TNFα from T cells, and decreased IFNγ in serum and liver. Western blot assay demonstrated that MXRA7 deficiency suppressed the activation of MAPK pathway and AKT/NF-κB pathway, respectively. Lastly, MXRA7 deficiency or overexpression regulated the expression of two matrix remodeling-related genes (fibronectin and TIMP1) in the liver. We concluded that MXRA7 was an active player in CCl4-induced liver injury, hypothetically by mediating the inflammation or immune compartments and matrix remodeling processes. Further exploration of MXRA7 as a possible new therapeutic target for management of inflammation-mediated liver injury was discussed.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/imunologia
7.
Sheng Wu Gong Cheng Xue Bao ; 31(2): 242-50, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26062345

RESUMO

Guangxi COFCO innovates its annual 200 000 ton cassava ethanol production in recent years. To evaluate the energy input/output of the production process, we used the domestic life cycle model. The calculation results show that the net energy value was 9.56 MJ/L ethanol. Energy input for ethanol production was 51.3% of the total. 61.5% of energy input for ethanol production was used for steam input in ethanol distillation. Energy produced from by-product was 5.03 MJ/L ethanol. Hence, efficient use of raw materials is an important measure to improve the energy efficiency in Guangxi COFCO and energy compensation from byproducts has key impact on the net energy saving.


Assuntos
Biocombustíveis , Etanol , Manihot , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA