RESUMO
Immunotherapy, especially immune checkpoint blockade therapy, represents a major milestone in the history of cancer therapy. However, the current response rate to immunotherapy among cancer patients must be improved; thus, new strategies for sensitizing patients to immunotherapy are urgently needed. Erythroid progenitor cells (EPCs), a population of immature erythroid cells, exert potent immunosuppressive functions. As a newly recognized immunosuppressive population, EPCs have not yet been effectively targeted. In this review, we summarize the immunoregulatory mechanisms of EPCs, especially for CD45+ EPCs. Moreover, in view of the regulatory effects of EPCs on the tumor microenvironment, we propose the concept of EPC-immunity, present existing strategies for targeting EPCs, and discuss the challenges encountered in both basic research and clinical applications. In particular, the impact of existing cancer treatments on EPCs is discussed, laying the foundation for combination therapies. The aim of this review is to provide new avenues for improving the efficacy of cancer immunotherapy by targeting EPCs.
Assuntos
Células Precursoras Eritroides , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Células Precursoras Eritroides/imunologia , Animais , Antígenos Comuns de Leucócito/metabolismoRESUMO
Immune checkpoint blockade (ICB) treatment has demonstrated excellent medical effects in oncology, and it is one of the most sought after immunotherapies for tumors. However, there are several issues with ICB therapy, including low response rates and a lack of effective efficacy predictors. Gasdermin-mediated pyroptosis is a typical inflammatory death mode. We discovered that increased expression of gasdermin protein was linked to a favorable tumor immune microenvironment and prognosis in head and neck squamous cell carcinoma (HNSCC). We used the mouse HNSCC cell lines 4MOSC1 (responsive to CTLA-4 blockade) and 4MOSC2 (resistant to CTLA-4 blockade) orthotopic models and demonstrated that CTLA-4 blockade treatment induced gasdermin-mediated pyroptosis of tumor cells, and gasdermin expression positively correlated to the effectiveness of CTLA-4 blockade treatment. We found that CTLA-4 blockade activated CD8+ T cells and increased the levels of interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) cytokines in the tumor microenvironment. These cytokines synergistically activated the STAT1/IRF1 axis to trigger tumor cell pyroptosis and the release of large amounts of inflammatory substances and chemokines. Collectively, our findings revealed that CTLA-4 blockade triggered tumor cells pyroptosis via the release of IFN-γ and TNF-α from activated CD8+ T cells, providing a new perspective of ICB.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Antígeno CTLA-4 , Fator de Necrose Tumoral alfa/metabolismo , Piroptose , Gasderminas , Citocinas/metabolismo , Interferon gama/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: As the global aging process continues to accelerate, heart failure (HF) has become an important cause of increased morbidity and mortality in elderly patients. Chronic atrial fibrillation (AF) is a major risk factor for HF. Patients with HF combined with AF are more difficult to treat and have a worse prognosis. The aim of this study was to explore the risk factors for 1-year mortality in patients with HF combined with AF and to develop a risk prediction assessment model. METHODS: We recruited hospitalized patients with HF and AF who received standardized care in the Department of Cardiology at Shengjing Hospital of China Medical University from January 2013 to December 2018. The patients were randomly divided into modeling and internal validation groups using a random number generator at a 1:1 ratio. Multivariate Cox regression analysis was used to identify risk factors for all-cause mortality during a one-year follow-up period. Then, a nomogram was constructed based on the weights of each index and validated. Receiver operating characteristic curve, the area under the curve (AUC), decision curve, and calibration curve analyses for survival were used to evaluate the model's predictive and clinical validities and calibration. RESULTS: We included 3,406 patients who met the eligibility criteria; 1,703 cases each were included in the modeling and internal validation groups. Eight statistically significant predictors were identified: age, sex, New York Heart Association cardiac function class III or IV, a history of myocardial infarction, and the albumin, triglycerides, N-terminal pro-b-type natriuretic peptide, and blood urea nitrogen levels. The AUCs were 0.793 (95% confidence interval: 0.763-0.823) and 0.794 (95% confidence interval: 0.763-0.823) in the modeling and validation cohorts, respectively. CONCLUSIONS: We present a predictive model for all-cause mortality in patients with coexisting HF and AF comprising eight key factors. This model gives clinicians a simple assessment tool that may improve the clinical management of these patients.
Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Nomogramas , Humanos , Fibrilação Atrial/mortalidade , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Masculino , Feminino , Insuficiência Cardíaca/mortalidade , Idoso , Medição de Risco/métodos , Pessoa de Meia-Idade , Fatores de Risco , Doença Crônica , China/epidemiologia , Idoso de 80 Anos ou mais , Causas de Morte/tendênciasRESUMO
Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.
Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Piroptose , Apoptose , Carbono , Cloreto de PolivinilaRESUMO
Immunotherapy has pioneered a new era of tumor treatment, in which the immune checkpoint blockade (ICB) exerts significant superiority in overcoming tumor immune escape. However, the formation of an immune-suppressive tumor microenvironment (TME) and the lack of effective activation of the immune response have become major obstacles limiting its development. Emerging reports indicate that cancer stem cells (CSCs) potentially play important roles in treatment resistance and progressive relapse, while current research is usually focused on CSCs themselves. In this review, we mainly emphasize the collusions between CSCs and tumor-infiltrating immune cells. We focus on the summary of CSC-immune cell crosstalk signaling pathways in ICB resistance and highlight the application of targeted drugs to improve the ICB response.
Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Imunoterapia , Evasão Tumoral , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: Enhancing the response rate of immunotherapy will aid in the success of cancer treatment. Here, we aimed to explore the combined effect of immunogenic radiotherapy with anti-PD-L1 treatment in immunotherapy-resistant HNSCC mouse models. METHODS: The SCC7 and 4MOSC2 cell lines were irradiated in vitro. SCC7-bearing mice were treated with hypofractionated or single-dose radiotherapy followed by anti-PD-L1 therapy. The myeloid-derived suppressive cells (MDSCs) were depleted using an anti-Gr-1 antibody. Human samples were collected to evaluate the immune cell populations and ICD markers. RESULTS: Irradiation increased the release of immunogenic cell death (ICD) markers (calreticulin, HMGB1 and ATP) in SCC7 and 4MOSC2 in a dose-dependent manner. The supernatant from irradiated cells upregulated the expression of PD-L1 in MDSCs. Mice treated with hypofractionated but not single-dose radiotherapy were resistant to tumour rechallenge by triggering ICD, when combined with anti-PD-L1 treatment. The therapeutic efficacy of combination treatment partially relies on MDSCs. The high expression of ICD markers was associated with activation of adaptive immune responses and a positive prognosis in HNSCC patients. CONCLUSION: These results present a translatable method to substantially improve the antitumor immune response by combining PD-L1 blockade with immunogenic hypofractionated radiotherapy in HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Células Supressoras Mieloides , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia/métodos , Células Supressoras Mieloides/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays cell- and tissue-specific roles in cancer, meaning that its activation in different tumors or cells may play different roles in tumor progression. We have previously described the tumor-promoting function of tumor-intrinsic NLRP3/IL-1ß signaling in head and neck squamous cell carcinoma (HNSCC), but its role in immune cells remains unclear. In this study, we found that NLRP3 was highly expressed in tumor-associated macrophages (TAMs) in both mouse and human HNSCC, and the expression of NLRP3 was positively correlated with the density of TAMs according to immunohistochemistry, immunofluorescence, and flow cytometry analyses. Importantly, the number of NLRP3high TAMs was related to worse overall survival in HNSCC patients. Knocking out NLRP3 inhibited M2-like macrophage differentiation in vitro. Moreover, the carcinogenic effect induced by 4-nitroquinoline-1-oxide was decreased in Nlrp3-deficient mice, which had smaller tumor sizes. Genetic depletion of NLRP3 reduced the expression of protumoral cytokines, such as IL-1ß, IL-6, IL-10, and CCL2, and suppressed the accumulation of TAMs and myeloid-derived suppressor cells (MDSCs) in mouse HNSCC. Thus, activation of NLRP3 in TAMs may contribute to tumor progression and have prognostic significance in HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Macrófagos Associados a Tumor/metabolismo , Interleucina-1beta/metabolismo , PrognósticoRESUMO
Inflammatory bone diseases include osteoarthritis (OA) and rheumatoid arthritis (RA), which can cause severe bone damage in a chronic inflammation state, putting tremendous pressure on the patients' families and government agencies regarding medical costs. In addition, the complexity of osteoimmunology makes research on these diseases difficult. Hence, it is urgent to determine the potential mechanisms and find effective drugs to target inflammatory bone diseases to reduce the negative effects of these diseases. Recently, pyroptosis, a gasdermin-induced necrotic cell death featuring secretion of pro-inflammatory cytokines and lysis, has become widely known. Based on the effect of pyroptosis on immunity, this process has gradually emerged as a vital component in the etiopathogenesis of inflammatory bone diseases. Herein, we review the characteristics and mechanisms of pyroptosis and then focus on its clinical significance in inflammatory bone diseases. In addition, we summarize the current research progress of drugs targeting pyroptosis to enhance the therapeutic efficacy of inflammatory bone diseases and provide new insights for future directions.
Assuntos
Doenças Ósseas , Piroptose , Humanos , Piroptose/fisiologia , Inflamação/patologia , Citocinas/metabolismo , Morte CelularRESUMO
OBJECTIVE: Adenoid cystic carcinoma (AdCC) and mucoepidermoid carcinoma (MEC) are the two most frequent malignancies of salivary glands. This study aims to explore the expression and migration of LAG3, TIM3, and A2aR in AdCC and MEC, and the potential relationship with oncogenic signaling molecules and immunosuppressive cytokines. MATERIALS AND METHODS: Custom made human salivary gland tissue microarrays included 81 AdCCs, 52 MECs, 76 normal salivary glands (NSG), and 14 pleomorphic adenoma (PMA) samples. Immunohistochemical analysis of lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), adenosine 2a receptor (A2aR), oncogenic phosphorylated S6 kinase (p-S6) and ERK1/2 (p-ERK1/2 ), and TGF-ß1 was performed with salivary gland tissue microarrays of human samples. The correlation of the immunostaining was analyzed based on a digital pathological system, and data were evaluated by hierarchical cluster. Further in vitro studies of knockdown immune checkpoints LAG3, TIM3, and A2aR were carried out by siRNA transfection. RESULTS: The expression levels of LAG3, TIM3, and A2aR were remarkably increased in AdCC and MEC, compared with NSG and PMA samples, but were independent of pathology grade. They were closely correlated with TGF-ß1, slightly related to p-ERK1/2 and p-S6. After the knockdown of immune checkpoints LAG3, TIM3, and A2aR, the migration of SACC-LM cell line was significantly reduced. CONCLUSIONS: These results suggested that LAG3, TIM3, and A2aR are overexpressed in AdCC and MEC, may promote migration of SACC-LM cell and correlated with TGF-ß1 and oncogenic signaling pathways.
Assuntos
Adenoma Pleomorfo , Carcinoma Adenoide Cístico , Carcinoma Mucoepidermoide , Neoplasias das Glândulas Salivares , Humanos , Adenoma Pleomorfo/genética , Carcinoma Adenoide Cístico/genética , Carcinoma Mucoepidermoide/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Neoplasias das Glândulas Salivares/patologia , Proteína do Gene 3 de Ativação de Linfócitos/genética , Receptor A2A de Adenosina/genéticaRESUMO
OBJECTIVES: Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs. MATERIALS AND METHODS: Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians. RESULTS: The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared. CONCLUSION: Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.
Assuntos
Aprendizado Profundo , Neoplasias Parotídeas , Humanos , Glândula Parótida/diagnóstico por imagem , Diagnóstico por Computador/métodos , Tomografia Computadorizada por Raios X , Neoplasias Parotídeas/diagnóstico por imagem , Estudos RetrospectivosRESUMO
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Assuntos
Vacinas Anticâncer , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia/métodos , Nanogéis , Neoplasias/tratamento farmacológico , Microambiente TumoralRESUMO
BACKGROUND: Mucoepidermoid carcinoma and adenoid cystic carcinoma are the two most common malignancies of salivary gland. Our study aims to explore the role of human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, and glucocorticoid-induced tumor necrosis factor receptor in adenoid cystic carcinoma and mucoepidermoid carcinoma, and the relationship between human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, glucocorticoid-induced TNF receptor, oncogenic signaling molecules, and cluster of differentiation 8. METHODS: Custom-made human salivary gland tissue microarrays included 81 Adenoid cystic carcinoma, 52 mucoepidermoid carcinoma, 76 normal salivary gland, and 14 pleomorphic adenoma samples. Immunohistochemical analysis of human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, and glucocorticoid-induced TNF receptor, oncogenic phosphorylated Erk1/2 , the epithelial-mesenchymal transition (EMT) molecule transforming growth factor ß1, and cluster of differentiation 8 was performed with salivary gland tissue microarray of human samples. RESULTS: According to a digital pathological system, we analyzed the correlation of immunostaining. The expression levels of human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, and glucocorticoid-induced TNF receptor were significantly enhanced in the adenoid cystic carcinoma and mucoepidermoid carcinoma, compared with those of pleomorphic adenoma and NSG samples. However, the expression levels of human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, and glucocorticoid-induced TNF receptor were independent of the pathological grade of malignancy of mucoepidermoid carcinoma and histological pattern of adenoid cystic carcinoma. They were closely related to phosphorylated Erk1/2 and transforming growth factor ß1, but negligibly related to cluster of differentiation 8. CONCLUSIONS: These results described that certain immune checkpoint molecules, namely, human endogenous Retrovirus-H long terminal repeat-associating protein 2, transmembrane and immunoglobulin domain-containing 2, and glucocorticoid-induced TNF receptor were overexpressed in Adenoid cystic carcinoma and mucoepidermoid carcinoma, but were independent of pathological grade, and may relate to transforming growth factor ß1, phosphorylated Erk1/2, and cluster of differentiation 8.
Assuntos
Adenoma Pleomorfo , Carcinoma Adenoide Cístico , Carcinoma Mucoepidermoide , Neoplasias das Glândulas Salivares , Adenoma Pleomorfo/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Adenoide Cístico/patologia , Carcinoma Mucoepidermoide/metabolismo , Glucocorticoides , Humanos , Imunoglobulinas/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Fator de Crescimento Transformador beta1RESUMO
OBJECTIVES: Receptor for hyaluronic acid (HA)-mediated motility (RHAMM) is also known as CD168. This study proposed to elucidate the prognostic and clinicopathological significance of CD168 expression in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Immune staining of a human tissue microarray and Western blot were used to reveal the expression level of CD168 in OSCC. Correlations between clinicopathological indexes and CD168 expression in OSCC patients were assessed. RESULTS: Increased expression of CD168 was detected in OSCC tissues. High expression of CD168 indicated worse survival of patients (p < .05). Furthermore, high expression of CD168 was related to pathological grade in OSCC (p < .05). CD168 expression was positively related to programmed death ligand 1 (PD-L1), CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), B7 homology 4 protein (B7-H4), CD44, CD133, and Slug expression in OSCC. CONCLUSION: This study revealed the overexpression of CD168 in OSCC and shed light on the prognostic significance of CD168 expression in OSCC patients.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
We report the design and synthesis of a series of three-dimensional (3D) covalent organic frameworks (COFs) as immunogenic cell death (ICD) inducers for cancer immunotherapy. Three triple-topic amine building blocks, inactive to inducing ICD, were used to construct three COFs, COF-607, COF-608, and COF-609, with outstanding ICD eliciting efficiency. Mechanism studies revealed that after linking these ICD inert monomers into the COF backbone, the optical properties of these COFs could be systematically tuned to achieve excellent reactive oxygen species (ROS) production performance. This combined with 3D cross-linked pores, mimicking lung structure, favor the exchange and diffusion of oxygen and ROS, leading to excellent inducing ICD efficacy. One member, COF-609, is capable of triggering abscopal and long-lasting immune memory effects in a mouse model of breast cancer with >95% mice survival after being treated with COF-609+αCD47 for 110 days.
Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Neoplasias , Animais , Imunoterapia , Camundongos , Espécies Reativas de OxigênioRESUMO
The epithelial-mesenchymal transition (EMT) is a pivotal step involved in cancer recurrence and metastasis. In addition, the activation of the EMT program can induce a cancer stem cell (CSC)-like phenotype and programmed death-ligand 1 (PD-L1) expression in head and neck squamous cell carcinoma (HNSCC). The CMTM family has reported as an important regulator in this process. Here, we investigated the role of CMTM4 in HNSCC. We indicated that CMTM4 was overexpressed in human and mouse HNSCC samples and in HNSCC cell lines by immunohistochemistry and Western blot. A high expression level of CMTM4 was correlated with advanced lymph node metastasis and a negative prognosis. CMTM4-knockdown by small interfering RNA downregulated the EMT process and inhibited the migration and invasion abilities of tumor cells. Moreover, knockdown of CMTM4 decreased CSC-associated markers via the protein kinase B pathway. Notably, CMTM4-knockdown inhibited the expression of interferon-γ induced PD-L1 in HNSCC cells. A positive correlation was found between CMTM4 expression and CD8+ and PD-1+ cell density in the stroma. Our findings indicated that CMTM4 may play an important role in regulating EMT/CSC phenotypes and PD-L1 expression. This study may reinforce the interest in CMTM4 as a potential target for the prognosis and treatment of HNSCC.
Assuntos
Antígeno B7-H1/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio MARVEL/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Metástase Linfática , Proteínas com Domínio MARVEL/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/genéticaRESUMO
Matrix metalloproteinase (MMP) 2 and 9 are the family members of proteases normally up-regulated in tumor to enhance the invasion and metastatic of tumor cells, and are associated with poor outcome of head and neck squamous cell carcinomas (HNSCCs). In the present work, MMPs-degradable gelatin nanoparticles (GNPs) are simultaneously loaded with photosensitizer indocyanine green (ICG) along with signal transducer activator of transcription 3 (STAT3) inhibitor NSC74859 (NSC, N) for efficient photothermal therapy (PTT) and immunotherapy of HNSCCs. In the tumor tissue, Gel-N-ICG nanoparticle was degraded and encapsulated ICG and NSC were effectively released. Under near-infrared (NIR) irradiation, the released ICG nanoparticles enabled effective photothermal destruction of tumors, and the STAT3 inhibitor NSC elicited potent antitumor immunity for enhanced cancer therapy. Based on two HNSCC mouse models, we demonstrated that Gel-N-ICG significantly delayed tumor growth without any appreciable body weight loss. Taken together, the strategy reported here may contribute that the stimuli-responsive proteases triggered nanoplatform could reduce tumor size more effectively in complex tumor microenvironment (TME) through combination of PTT and immunotherapy.
Assuntos
Gelatinases/metabolismo , Nanopartículas , Fármacos Fotossensibilizantes , Proteínas Inibidoras de STAT Ativados , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoterapia , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica , Proteínas Inibidoras de STAT Ativados/química , Proteínas Inibidoras de STAT Ativados/farmacocinética , Proteínas Inibidoras de STAT Ativados/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidoresRESUMO
OBJECTIVES: Ribonucleotide reductase M2 (RRM2) is a rate-limiting enzyme involved in DNA repair and synthesis. This study aimed to investigate the expression level, clinicopathological significance, and prognostic value of RRM2 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Human OSCC tissue microarrays were used to detect the expression of RRM2, cancer stem cell (CSC) markers CD44 and aldehyde dehydrogenase 1 (ALDH1), and the epithelial-mesenchymal transition (EMT) marker Slug. The correlation of RRM2 expression with clinicopathological parameters was evaluated. The effects of RRM2 on cell proliferation, migration, and apoptosis were investigated. RESULTS: Compared with normal and dysplastic tissues, the expression of RRM2 in human primary OSCC was significantly increased, and its overexpression was correlated with advanced pathological grade. The overall survival rate of patients with high RRM2 expression was lower than that of patients with low RRM2 expression. The overexpression of RRM2 was significantly associated with OSCC recurrence, and its overexpression was correlated with the CSC markers CD44 and ALDH1 and the EMT marker Slug. The expression of RRM2 promotes the proliferation and migration of human OSCC cells and inhibits apoptosis. CONCLUSION: Ribonucleotide reductase M2 may be a novel target in the diagnosis, prognosis, and therapy of OSCC.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/genética , Recidiva Local de Neoplasia , Prognóstico , Ribonucleosídeo Difosfato Redutase , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
Nanoparticle-based tumor immunotherapy has emerged to show great potential for simultaneously regulating the immunosuppressive tumor microenvironment, reducing the unpleasant side effects, and activating tumor immunity. Herein, an excipient-free glutathione/pH dual-responsive prodrug nanoplatform is reported for immunotherapy, simply by sequentially liberating 5-aminolevulinic acid and immunogenically inducing doxorubicin drug molecules, which can leverage the acidity and reverse tumor microenvironment. The obtained nanoplatform effectively boosts the immune system by promoting dendritic cell maturation and reducing the number of immune suppressive immune cells, which shows the enhanced adjunctive effect of anti-programmed cell death protein 1 therapy. Overall, the prodrug-based immunotherapy nanoplatform may offer a reliable strategy for improving synergistic antitumor efficacy.
Assuntos
Neoplasias , Pró-Fármacos , Humanos , Morte Celular Imunogênica , Imunoterapia , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente TumoralRESUMO
Our study investigated the expression of malic enzyme 2 (ME2) in human oral squamous cell carcinoma (OSCC) and associated pathological and clinical pattern. We demonstrated that human OSCC tissues expressed a high level of ME2, and the overexpression of ME2 is closely connected to a high pathological grade, lymphatic metastasis, large tumor size and human papillomavirus (HPV) (P < 0.001). Similarly, high levels of ME2 expression in OSCC tissue were shown to be correlated with poor prognosis (P < 0.05). The expression of ME2 was correlated with Slug, SOX2, and aldehyde dehydrogenase-1 (ALDH1) immunoreactivity.ME2 was shown to be overexpressed in OSCC tissue and indicated a poor prognosis for OSCC. ME2 may be correlated with several immune markers.
Assuntos
Biomarcadores Tumorais/genética , Malato Desidrogenase/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Modelos de Riscos Proporcionais , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise Serial de Tecidos/métodosRESUMO
ATPase family AAA domain-containing protein 2 (ATAD2) is highly expressed in a variety of malignancies and can promote the proliferation of tumor cells and inhibit their differentiation. However, the expression of ATAD2 and its related mechanism in oral squamous cell carcinoma (OSCC) are still unknown. Immunohistochemical staining of ATAD2, cancer stem cells (CSCs) markers and immune checkpoint molecules was conducted on human OSCC specimens to determine the expression levels of these proteins and their correlations with the clinicopathological characteristics of ATAD2 in OSCC. Moreover, the role of ATAD2 in cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT) were assessed by silencing ATAD2 in vitro. Immunohistochemical analysis revealed that ATAD2 expression in OSCC tissues was markedly higher than that in adjacent dysplastic tissues and normal mucosal tissues. Overexpression of ATAD2 was related to poor overall survival in OSCC patients. In addition, the protein expression of ATAD2 was notably correlated with the expression of B7-H4, PD-L1, CMTM6, Slug and ALDH1 in human OSCC. ATAD2 knockdown arrested the cell cycle, promoted the apoptosis, and inhibited the proliferation, migration, and EMT of OSCC cells. In conclusion, these findings revealed that ATAD2 is highly expressed in OSCC and can act as a poor prognostic indicator.