Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant J ; 119(1): 197-217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565306

RESUMO

Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 µm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.


Assuntos
Cloreto de Alumínio , Parede Celular , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Vacúolos , Malus/genética , Malus/metabolismo , Malus/efeitos dos fármacos , Vacúolos/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactonas/metabolismo , Lactonas/farmacologia , Plantas Geneticamente Modificadas , Estresse Fisiológico , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas
2.
Plant Physiol ; 193(1): 821-839, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37311207

RESUMO

Soil acidification in apple (Malus domestica) orchards results in the release of rhizotoxic aluminum ions (Al3+) into soil. Melatonin (MT) participates in plant responses to abiotic stress; however, its role in AlCl3 stress in apple remains unknown. In this study, root application of MT (1 µM) substantially alleviated AlCl3 stress (300 µM) in Pingyi Tiancha (Malus hupehensis), which was reflected by higher fresh and dry weight, increased photosynthetic capacity, and longer and more roots compared with plants that did not receive MT treatment. MT functioned mainly by regulating vacuolar H+/Al3+ exchange and maintaining H+ homeostasis in the cytoplasm under AlCl3 stress. Transcriptome deep sequencing analysis identified the transcription factor gene SENSITIVE TO PROTON RHIZOTOXICITY 1 (MdSTOP1) was induced by both AlCl3 and MT treatments. Overexpressing MdSTOP1 in apple increased AlCl3 tolerance by enhancing vacuolar H+/Al3+ exchange and H+ efflux to the apoplast. We identified 2 transporter genes, ALUMINUM SENSITIVE 3 (MdALS3) and SODIUM HYDROGEN EXCHANGER 2 (MdNHX2), as downstream targets of MdSTOP1. MdSTOP1 interacted with the transcription factor NAM ATAF and CUC 2 (MdNAC2) to induce MdALS3 expression, which reduced Al toxicity by transferring Al3+ from the cytoplasm to the vacuole. Furthermore, MdSTOP1 and MdNAC2 coregulated MdNHX2 expression to increase H+ efflux from the vacuole to the cytoplasm to promote Al3+ compartmentalization and maintain cation balance in the vacuole. Taken together, our findings reveal an MT-STOP1 + NAC2-NHX2/ALS3-vacuolar H+/Al3+ exchange model for the alleviation of AlCl3 stress in apple, laying a foundation for practical applications of MT in agriculture.


Assuntos
Malus , Melatonina , Malus/metabolismo , Melatonina/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Cloreto de Alumínio/metabolismo , Prótons , Íons/metabolismo , Fatores de Transcrição/metabolismo , Solo
3.
Plant J ; 109(1): 47-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695268

RESUMO

Dwarfing rootstocks and dwarf cultivars are urgently needed for modern pear cultivation. However, germplasm resources for dwarfing pear are limited, and the underlying mechanisms remain unclear. We previously showed that dwarfism in pear is controlled by the single dominant gene PcDw (Dwarf). We report here that the expression of PcAGP7-1 (ARABINOGALACTAN PROTEIN 7-1), a key candidate gene for PcDw, is significantly higher in dwarf-type pear plants because of a mutation in an E-box in the promoter. Electrophoretic mobility shift assays and transient infiltration showed that the transcription factors PcBZR1 and PcBZR2 could directly bind to the E-box of the PcAGP7-1 promoter and repress transcription. Moreover, transgenic pear lines overexpressing PcAGP7-1 exhibited obvious dwarf phenotypes, whereas RNA interference pear lines for PcAGP7-1 were taller than controls. PcAGP7-1 overexpression also enhanced cell wall thickness, affected cell morphogenesis, and reduced brassinolide (BL) content, which inhibited BR signaling via a negative feedback loop, resulting in further dwarfing. Overall, we identified a dwarfing mechanism in perennial woody plants involving the BL-BZR/BES-AGP-BL regulatory module. Our findings provide insight into the molecular mechanism of plant dwarfism and suggest strategies for the molecular breeding of dwarf pear cultivars.


Assuntos
Brassinosteroides/metabolismo , Galactanos/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/genética , Esteroides Heterocíclicos/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Pyrus/química , Pyrus/crescimento & desenvolvimento , Pyrus/ultraestrutura , Nicotiana/química , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/ultraestrutura
4.
Plant Biotechnol J ; 21(11): 2273-2290, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37465981

RESUMO

Large amounts of potash fertilizer are often applied to apple (Malus domestica) orchards to enhance fruit quality and yields, but this treatment aggravates KCl-based salinity stress. Melatonin (MT) is involved in a variety of abiotic stress responses in plants. However, its role in KCl stress tolerance is still unknown. In the present study, we determined that an appropriate concentration (100 µm) of MT significantly alleviated KCl stress in Malus hupehensis by enhancing K+ efflux out of cells and compartmentalizing K+ in vacuoles. Transcriptome deep-sequencing analysis identified the core transcription factor gene MdWRKY53, whose expression responded to both KCl and MT treatment. Overexpressing MdWRKY53 enhanced KCl tolerance in transgenic apple plants by increasing K+ efflux and K+ compartmentalization. Subsequently, we characterized the transporter genes MdGORK1 and MdNHX2 as downstream targets of MdWRKY53 by ChIP-seq. MdGORK1 localized to the plasma membrane and enhanced K+ efflux to increase KCl tolerance in transgenic apple plants. Moreover, overexpressing MdNHX2 enhanced the KCl tolerance of transgenic apple plants/callus by compartmentalizing K+ into the vacuole. RT-qPCR and LUC activity analyses indicated that MdWRKY53 binds to the promoters of MdGORK1 and MdNHX2 and induces their transcription. Taken together, our findings reveal that the MT-WRKY53-GORK1/NHX2-K+ module regulates K+ homeostasis to enhance KCl stress tolerance in apple. These findings shed light on the molecular mechanism of apple response to KCl-based salinity stress and lay the foundation for the practical application of MT in salt stress.


Assuntos
Malus , Melatonina , Melatonina/metabolismo , Malus/metabolismo , Tolerância ao Sal/genética , Homeostase , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
5.
Nanotechnology ; 34(15)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630705

RESUMO

The construction of an environmentally responsive drug-release system is of great significance for the treatment of special diseases. In particular, the construction of nanomaterials with pH- and thermal-responsiveness, which can effectively encapsulate drugs and control drug release, is becoming hot research. In this study, zwitterionic nanocapsules with stable core-shell structures were synthesized by inverse reversible addition-fragmentation transfer miniemulsion interfacial polymerization. To further study the structure and performance of the nanocapsules, the prepared nanocapsules were characterized by transmission electron microscopy, dynamic light dispersion, and zeta potential analysis. It was found that the nanocapsules had dual pH- and thermal- responsiveness, and the average particle size ranged from 178 to 142 nm when the temperature changed from 25 °C to 40 °C. In addition, bovine serum albumin (BSA) was encapsulated into nanocapsules, and sustained release experiments were conducted at 10 °C and 40 °C. The results showed that nanocapsules as carriers of BSA could achieve the purpose of sustained release of drugs, and showed different sustained release curves at different temperatures. Finally,in vitrocytotoxicity tests were performed to demonstrate the feasibility of their biomedical application. It is believed that the dual pH- and thermal- responsive nanocapsules are promising for drug-controlled release.


Assuntos
Nanocápsulas , Nanocápsulas/química , Liberação Controlada de Fármacos , Preparações de Ação Retardada , Microscopia Eletrônica de Transmissão , Soroalbumina Bovina , Concentração de Íons de Hidrogênio , Tamanho da Partícula
6.
Opt Express ; 30(18): 32244-32255, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242290

RESUMO

Sapphire nanostructures with a high aspect-ratio have broad applications in photoelectronic devices, which are difficult to be fabricated due to the properties of high transparency and hardness, remarkable thermal and chemical stability. Although the phenomenon of laser-induced periodic surface structures (LIPSS) provides an extraordinary idea for surface nanotexturing, it suffers from the limitation of the small depth of the nanostructures. Here, a high-efficiency self-modulated femtosecond laser hybrid technology was proposed to fabricate nanostructures with high aspect-ratios on the sapphire surface, which was combined backside laser modification and subsequent wet etching. Due to the refractive index mismatch, the focal length of the laser could be elongated when focused inside sapphire. Thus, periodic nanostructures with high-quality aspect ratios of more than 55 were prepared on the sapphire surface by using this hybrid fabrication method. As a proof-of-concept, wafer-scale (∼2 inches) periodic nanostripes with a high aspect-ratio were realized on a sapphire surface, which possesses unique diffractive properties compared to typical shallow gratings. The results indicate that the self-modulated femtosecond laser hybrid technology is an efficient and versatile technique for producing high aspect-ratio nanostructures on hard and transparent materials, which would propel the potential applications in optics and surface engineering, sensing, etc.

7.
Macromol Rapid Commun ; 43(7): e2100863, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35179256

RESUMO

The shape memory effect is the capability of a structure or a material that can be deformed into a certain temporary shape under external stimulus, and the shape will be fixed without the stimulus. The recovery process can be triggered by the same stimulus. The intelligent tunable device based on the shape memory effect has a wide range of applications in many fields. In the optical field, smart diffraction gratings can accomplish in situ optical diffractions according to requirements, meeting the high demand in the next generation of smart optical systems. However, it is essential to construct high-precision grating structures based on shape memory materials. Here, a smart diffraction grating based on UV-curable shape memory polymers (SMPs) via two-beam interference is reported, with nano-scale precision, excellent deformability and recovery ability, and adjustable spectroscopic performance. More importantly, based on the shape memory effect, grating structures that surpass the precision of the fabrication system can be obtained. The smart grating exhibits rapid deformation and recovery upon heating and long-term storage capability, which facilitates them to be applied in optics, electronics, and integrated sensing.


Assuntos
Polímeros , Materiais Inteligentes , Óptica e Fotônica , Polímeros/química
8.
Plant Cell Rep ; 41(9): 1863-1874, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781542

RESUMO

KEY MESSAGE: Exogenous brassinolide promotes Fe absorption through mechanism I strategy, thus improving the tolerance of Malus hupehensis seedlings to Fe deficiency stress. Iron (Fe) deficiency is a common nutritional disorder that results in decreased yield and poor fruit quality in apple production. As a highly active synthetic analog of brassinosteroids, brassinolide (BL) plays numerous roles in plant responses to abiotic stresses. However, its role in Fe deficiency stress in apple plants has never been reported. Herein, we found that the exogenous application of 0.2 mg L-1 BL could significantly enhance the tolerance of apple seedlings to Fe deficiency stress and result in a low etiolation rate and a high photosynthetic rate. The functional mechanisms of this effect were also explored. We found that first, exogenous BL could improve Fe absorption through the mechanism I strategy. BL induced the activity of H+-ATPase and the expression of MhAHA family genes, resulting in rhizosphere acidification. Moreover, BL could enhance the activity of Fe chelate reductase and absorb Fe through direct binding with the E-box of the MhIRT1 or MhFRO2 promoter via the transcription factors MhBZR1 and MhBZR2. Second, exogenous BL alleviated osmotic stress by increasing the contents of osmolytes (proline, solution proteins, and solution sugar) and scavenged reactive oxygen species by improving the activities of antioxidant enzymes. Lastly, exogenous BL could cooperate with other endogenous plant hormones, such as indole-3-acetic acid, isopentenyl adenosine, and gibberellic acid 4, that respond to Fe deficiency stress indirectly. This work provided a theoretical basis for the application of exogenous BL to alleviate Fe deficiency stress in apple plants.


Assuntos
Malus , Esteroides Heterocíclicos , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Malus/genética , Plântula , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico/genética
9.
BMC Plant Biol ; 21(1): 433, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556040

RESUMO

BACKGROUND: Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. RESULTS: In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 µM exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. CONCLUSION: Resveratrol improves the iron deficiency adaptation of M. baccata seedlings mainly by regulating iron absorption.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Deficiências de Ferro , Ferro/metabolismo , Malus/metabolismo , Doenças das Plantas/induzido quimicamente , Resveratrol/metabolismo , Estresse Fisiológico/efeitos dos fármacos , China , Produtos Agrícolas/metabolismo , Plântula/metabolismo
10.
FASEB J ; 33(7): 8083-8093, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30939244

RESUMO

Resveratrol (RSV) has broad prospective applications as a radiation protection drug, but its mechanism of action is not yet clear. Here, we found that 5 µM RSV can effectively reduce the cell death caused by irradiation. Irradiation leads to G2/M phase arrest in the cell cycle, whereas RSV treatment increases S-phase cell cycle arrest, which is associated with sirtuin 1 (SIRT1) regulation. Meanwhile, RSV promotes DNA damage repair, mainly by accelerating the efficiency of homologous recombination repair. Under oxidative stress, tyrosyl-tRNA synthetase (TyrRS) is transported to the nucleus to protect against DNA damage. RSV can promote TyrRS acetylation, thus promoting TyrRS to enter the nucleus, where it regulates the relevant signaling proteins and reduces apoptosis and DNA damage. SIRT1 is a deacetylase, and SIRT1 knockdown or inhibition can increase TyrRS acetylation levels, further reducing radiation-induced apoptosis after RSV treatment. Our study revealed a new radiation protection mechanism for RSV, in which the acetylation of TyrRS and its translocation into the nucleus is promoted, and this mechanism may also represent a novel protective target against irradiation.-Gao, P., Li, N., Ji, K., Wang, Y., Xu, C., Liu, Y., Wang, Q., Wang, J., He, N., Sun, Z., Du, L., Liu, Q. Resveratrol targets TyrRS acetylation to protect against radiation-induced damage.


Assuntos
Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Lesões Experimentais por Radiação , Resveratrol/farmacologia , Transdução de Sinais , Tirosina-tRNA Ligase , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células HEK293 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/efeitos da radiação , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Sirtuína 1/genética , Sirtuína 1/metabolismo , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
11.
Nanotechnology ; 31(42): 425710, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32610299

RESUMO

A facile approach is established to prepare zwitterionic nanocapsules (ZN C s) with controlled diameters and core/shell structures based on an inverse reversible addition-fragmentation transfer (RAFT) miniemulsion interfacial polymerization method. The diameters and core volume fractions of ZNCs can be tuned finely from 61 to 220 nm and from 0.22 to 0.61, respectively. Furthermore, the thermal-responsive property of the prepared zwitterionic nanocapsules was systematically studied relating to core/shell ratios and cross-linking degrees. These ZNCs could be particularly useful in constructing polymeric materials with well-defined nanoporous structures for nano-void membranes, drug delivery devices and catalytic carriers.

12.
Nano Lett ; 19(5): 2953-2959, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30969778

RESUMO

In order to lower the capital and operational cost of desalination and wastewater treatment processes, nanofiltration (NF) membranes need to have a high water permeation and ionic rejection, while also maintaining a stable performance through antifouling resistance. Recently, Turing-type reaction conditions [ Science 2018, 360, 518-521] and sacrificed metal organic frame (MOF) nanoparticles [ Nat. Commun. 2018, 9, 2004] have been reported to introduce nanovoids into thin-film composite (TFC) polyamide (PA) NF membranes for an improved performance. Herein, we report a one-step fabrication of thin-film nanocomposite membranes (TFNM) with controllable nanovoids in the polyamide layer by introducing hollow zwitterionic nanocapsules (HZNCs) during interfacial polymerization. It was found that embedding HZNCs increases the membrane internal free volume, external surface area, and hydrophilicity, thus enhancing the water permeation and antifouling resistance without trading off the rejection of multivalent ions. For example, water permeation of the NF membranes embedded with about 19.0 wt % of HZNCs (73 L m-2 h-1) increased by 70% relative to the value of the control TFC NF membrane without HZNCs (43 L m-2 h-1). This increase comes while also maintaining 95% rejection of Na2SO4. Further, we also determined the effect of the mass loading of HZNCs on the top surface of the TFC NF membranes on the membrane performance. This work provided a direct and simple route to fabricate advanced desalination membranes with a superior separation performance.

13.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216644

RESUMO

Tissue and cell damage caused by ionizing radiation is often highly genotoxic. The swift repair of DNA damage is crucial for the maintenance of genomic stability and normal cell fitness. Long noncoding RNAs (lncRNAs) have been reported to play an important role in many physiological and pathological processes in cells. However, the exact function of lncRNAs in radiation-induced DNA damage has yet to be elucidated. Therefore, this study aimed to analyze the potential role of lncRNAs in radiation-induced DNA damage. We examined the expression profiles of lncRNAs and mRNAs in 293T cells with or without 8 Gy irradiation using high-throughput RNA sequencing. We then performed comprehensive transcriptomic and bioinformatic analyses of these sequencing results. A total of 18,990 lncRNAs and 16,080 mRNAs were detected in all samples. At 24 h post irradiation, 49 lncRNAs and 323 mRNAs were differentially expressed between the irradiation group and the control group. qRT-PCR was used to verify the altered expression of six lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the predicted genes were mainly involved in the histone mRNA metabolic process and Wnt signaling pathways. This study may provide novel insights for the study of lncRNAs in radiation-induced DNA damage.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Radiação Ionizante , Biologia Computacional/métodos , Dano ao DNA , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , MicroRNAs/genética , Interferência de RNA , Reprodutibilidade dos Testes , Transcriptoma
14.
Nanotechnology ; 29(14): 145704, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29219851

RESUMO

Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor's work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

15.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544713

RESUMO

Colorectal cancer is the most commonly reported gastrointestinal malignancy, with a recent, rapid increase of the annual incidence all over the world. Enhancing the radiosensitivity of cancer cells while preserving the health of normal cells is one of the most important tasks in clinical radiobiology. However, resistance to radiotherapy for colorectal cancer greatly decreases the therapeutic outcome. Melatonin (N-acetyl-5-methoxytryptamine), a natural secretory product that the pineal gland in the brain normally produces, has been reported to have anticancer properties. In the study, we investigated the combination of melatonin with radiotherapy as a treatment for colorectal cancer. We firstly explored the anti-tumor activity of melatonin combined with ionizing radiation (IR) against colorectal carcinoma in vitro. It was found that melatonin effectively inhibited human colorectal carcinoma cell line HCT 116 cellular proliferation, colony formation rate and cell migration counts following IR. Increasing the radiosensitivity of colorectal cancer cells by melatonin treatment was found to be associated with cell cycle arrest in the G2/M phase, downregulation of proteins involved in DNA double-strand break repair and activation of the caspase-dependent apoptotic pathway. Moreover, we also investigated the combined effect of IR and melatonin on colorectal tumor in vivo. Results from a tumor xenograft showed that melatonin plus IR treatment significantly suppressed tumor cell growth compared with melatonin or IR alone, resulting in a much higher tumor inhibition rate for the combined treatment. The data suggested that melatonin combined with IR could improve the radiosensitivity of colorectal cancer and thus enhance the therapeutic effect of the patients, implying melatonin could function as a potential sensitizer in tumor radiotherapy.


Assuntos
Neoplasias Colorretais/patologia , Raios gama , Melatonina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/patologia , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Células HCT116 , Humanos , Masculino , Camundongos Nus
16.
Int J Mol Sci ; 18(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758961

RESUMO

Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant, and the radioprotective role of Nrf2 is found in bone marrow, lung, and intestine, etc. Here, we investigated the effect of Nrf2 knockout on radiation-induced intestinal injuries using Nrf2 knockout (Nrf2-/-) mice and wild-type (Nrf2+/+) C57BL/6J mice following 13 Gy abdominal irradiation (ABI). It was found that Nrf2 knockout promoted the survival of irradiated mice, protected the crypt-villus structure of the small intestine, and elevated peripheral blood lymphocyte count and thymus coefficients. The DNA damage of peripheral blood lymphocytes and the apoptosis of intestinal epithelial cells (IECs) of irradiated Nrf2-/- mice were decreased. Furthermore, compared with that of Nrf2+/+ mice, Nrf2 knockout increased the number of Lgr5⁺ intestinal stem cells (ISCs) and their daughter cells including Ki67⁺ transient amplifying cells, Villin⁺ enterocytes, and lysozyme⁺ Paneth cells. Nuclear factor-κB (NF-κB) was accumulated in the crypt base nuclei of the small intestine, and the mRNA expression of NF-κB target genes Bcl-2, uPA, and Xiap of the small intestine from irradiated Nrf2-/- mice were increased. Collectively, Nrf2 knockout has the protective effect on small intestine damage following abdominal irradiation by prompting the proliferation and differentiation of Lgr5⁺ intestinal stem cells and activation of NF-κB.


Assuntos
Diferenciação Celular , Enterócitos , Raios gama/efeitos adversos , Enteropatias , Fator 2 Relacionado a NF-E2/deficiência , Lesões Experimentais por Radiação , Células-Tronco , Animais , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Enterócitos/metabolismo , Enterócitos/patologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Camundongos , Camundongos Knockout , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
17.
Int J Cancer ; 138(12): 2875-83, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26860236

RESUMO

The objective of this study was to estimate solid cancer risk attributable to long-term, fractionated occupational exposure to low doses of ionizing radiation. Based on cancer incidence for the period 1950-1995 in a cohort of 27,011 Chinese medical diagnostic X-ray workers and a comparison cohort of 25,782 Chinese physicians who did not use X-ray equipment in their work, we used Poisson regression to fit excess relative risk (ERR) and excess absolute risk (EAR) dose-response models for incidence of all solid cancers combined. Radiation dose reconstruction was based on a previously published method that relied on simulating measurements for multiple X-ray machines, workplaces and working conditions, information about protective measures, including use of lead aprons, and work histories. The resulting model was used to estimate calendar year-specific badge dose calibrated as personal dose equivalent (Sv). To obtain calendar year-specific colon doses (Gy), we applied a standard organ conversion factor. A total of 1,643 cases of solid cancer were identified in 1.45 million person-years of follow-up. In both ERR and EAR models, a statistically significant radiation dose-response relationship was observed for solid cancers as a group. Averaged over both sexes, and using colon dose as the dose metric, the estimated ERR/Gy was 0.87 (95% CI: 0.48, 1.45), and the EAR was 22 per 10(4)PY-Gy (95% CI: 14, 32) at age 50. We obtained estimates of the ERR and EAR of solid cancers per unit dose that are compatible with those derived from other populations chronically exposed to low dose-rate occupational or environmental radiation.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Doenças Profissionais/epidemiologia , Exposição Ocupacional , Raios X/efeitos adversos , Idoso , China/epidemiologia , Feminino , Pessoal de Saúde , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Risco
18.
Int J Mol Sci ; 15(2): 2157-71, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24481064

RESUMO

Colon cancer is one of the most common tumors of the digestive tract. Resistance to ionizing radiation (IR) decreased therapeutic efficiency in these patients' radiotherapy. XRCC2 is the key protein of DNA homologous recombination repair, and its high expression is associated with enhanced resistance to DNA damage induced by IR. Here, we investigated the effect of XRCC2 silencing on colon tumor cells' growth and sensitivity to X-radiation in vitro and in vivo. Colon tumor cells (T84 cell line) were cultivated in vitro and tumors originated from the cell line were propagated as xenografts in nude mice. The suppression of XRCC2 expression was achieved by using vector-based short hairpin RNA (shRNA) in T84 cells. We found that the knockdown of XRCC2 expression effectively decreased T84 cellular proliferation and colony formation, and led to cell apoptosis and cell cycle arrested in G2/M phase induced by X-radiation in vitro. In addition, tumor xenograft studies suggested that XRCC2 silencing inhibited tumorigenicity after radiation treatment in vivo. Our data suggest that the suppression of XRCC2 expression rendered colon tumor cells more sensitive to radiation therapy in vitro and in vivo, implying XRCC2 as a promising therapeutic target for the treatment of radioresistant human colon cancer.


Assuntos
Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , RNA Interferente Pequeno/genética , Tolerância a Radiação/genética , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos da radiação , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Carga Tumoral , Raios X
19.
Front Oncol ; 14: 1389678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884080

RESUMO

This study employs a two-sample bidirectional Mendelian randomization (MR) approach to systematically evaluate the causal relationship between gut microbiota and oral cavity cancer (OCC). Objective: To address the challenge in establishing the causal relationship between gut microbiota and OCC, we applied a systematic MR analysis. Methods: Utilizing GWAS data from the MiBioGen consortium (18,340 individuals) and UK Biobank (n = 264,137), we selected instrumental variables and employed MR-Egger, weighted median, IVW, and weighted mode analyses. Heterogeneity and pleiotropy were assessed using Cochran's Q test and MR-Egger intercept test. Results: Our findings indicate, at the order level, Bacteroidales (OR = 0.9990, 95% CI = 0.9980-1.0000, P = 0.046), Burkholderiales (OR = 1.0009, 95% CI = 1.0001-1.0018, P = 0.033), and Victivallales (OR = 0.9979, 95% CI = 0.9962-0.9995, P = 0.037) exhibit causality on OCC in the Weighted median, IVW, and MR-Egger analyses, respectively. At the family level, Alcaligenaceae (OR = 1.0012, 95% CI = 1.0004-1.0019, P = 0.002) and Clostridiaceae1 (OR = 0.9970, 95% CI = 0.9948-0.9992, P = 0.027) show causality on OCC in IVW and MR-Egger analyses. At the genus level, Clostridiumsensustricto1 (IVW, OR = 0.9987, 95% CI = 0.9980-0.9995, P = 0.001; MR-Egger, OR = 0.9978, 95% CI = 0.9962-0.9995, P = 0.035), Desulfovibrio (IVW, OR = 1.0008, 95% CI = 1.0001-1.0015, P = 0.016), Eggerthella (IVW, OR = 0.9995, 95% CI = 0.9990-1.0000, P = 0.048), Eubacterium fissicatena group (IVW, OR = 1.0005, 95% CI = 1.0000-1.0009, P = 0.032), and Holdemanella (IVW, OR = 0.9994, 95% CI = 0.9989-0.9999, P = 0.018) are implicated in causing OCC in related analyses. Conclusion: Our study identifies Burkholderiales order, Alcaligenaceae family, Desulfovibrio genus, and Eubacterium fissicatena group as causally increasing OCC risk. In contrast, Bacteroidales order, Victivallales order, Clostridiaceae1 family, Clostridiumsensustricto1 genus, Eggerthella genus, and Holdemanella genus are causally associated with a decreased OCC risk. However, further investigations are essential to delineate an optimal gut microbiota composition and unravel the underlying mechanisms of specific bacterial taxa in OCC pathophysiology.

20.
ACS Appl Mater Interfaces ; 16(7): 9581-9592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38332526

RESUMO

Microlens arrays (MLAs) with a tunable imaging ability are core components of advanced micro-optical systems. Nevertheless, tunable MLAs generally suffer from high power consumption, an undeformable rigid body, large and complex systems, or limited focal length tunability. The combination of reconfigurable smart materials with MLAs may lead to distinct advantages including programmable deformation, remote manipulation, and multimodal tunability. However, unlike photopolymers that permit flexible structuring, the fabrication of tunable MLAs and compound eyes (CEs) based on transparent smart materials is still rare. In this work, we report reconfigurable MLAs that enable tunable imaging based on shape memory polymers (SMPs). The smart MLAs with closely packed 200 × 200 microlenses (40.0 µm in size) are fabricated via a combined technology that involves wet etching-assisted femtosecond laser direct writing of MLA templates on quartz, soft lithography for MLA duplication using SMPs, and the mechanical heat setting for programmable reconfiguration. By stretching or squeezing the shape memory MLAs at the transition temperature (80 °C), the size, profiles, and spatial distributions of the microlenses can be programmed. When the MLA is stretched from 0 to 120% (area ratio), the focal length is increased from 116 to 283 µm. As a proof of concept, reconfigurable MLAs and a 3D CE with a tunable field of view (FOV, 160-0°) have been demonstrated in which the thermally triggered shape memory deformation has been employed for tunable imaging. The reconfigurable MLAs and CEs with a tunable focal length and adjustable FOV may hold great promise for developing smart micro-optical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA