Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(10): 5469-5478, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38433716

RESUMO

The electrochemical nitrogen reduction reaction (eNRR) has emerged as a promising strategy for green ammonia synthesis. However, it suffers unsatisfactory reaction performance owing to the low aqueous solubility of N2 in aqueous solution, the high dissociation energy of N≡N, and the unavoidable competing hydrogen evolution reaction (HER). Herein, a MIL-53(Fe)@TiO2 catalyst is designed and synthesized for highly efficient eNRR. Relative to simple MIL-53(Fe), MIL-53(Fe)@TiO2 achieves a 2-fold enhancement in the Faradaic efficiency (FE) with an improved ammonia yield rate by 76.5% at -0.1 V versus reversible hydrogen electrode (RHE). After four cycles of electrocatalysis, MIL-53(Fe)@TiO2 can maintain a good catalytic activity, while MIL-53(Fe) exhibits a significant decrease in the NH3 yield rate and FE by 79.8 and 82.3%, respectively. Benefiting from the synergetic effect between TiO2 and MIL-53(Fe) in the composites, Fe3+ ions can be greatly stabilized in MIL-53(Fe) during the eNRR process, which greatly hinders the catalyst deactivation caused by the electrochemical reduction of Fe3+ ions. Further, the charge transfer ability in the interface of composites can be improved, and thus, the eNRR activity is significantly boosted. These findings provide a promising insight into the preparation of efficient composite electrocatalysts.

2.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963213

RESUMO

In this paper, a kind of green triboelectric nano-generator based on natural degradable cellulose is proposed. Different kinds of regenerated cellulose composite layers are prepared by a blending doping method, and then assembled with poly(tetrafluoroethylene) (PTFE) thin films to form tribioelectric nanogenerator (TENG). The results show that the open circuit output voltage and the short circuit output current using a pure cellulose membrane is 7.925 V and 1.095 µA. After adding a certain amount of polyamide (PA6)/polyvinylidene fluoride (PVDF)/barium titanate (BaTiO3), the open circuit output voltage peak and the peak short circuit output current increases by 254.43% (to 20.155 V) and 548.04% (to 6.001 µA). The surface morphology, elemental composition and functional group of different cellulose layers are characterized by Scanning Electronic Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and tested by the electrochemical analyze. Moreover, after multiple assembly and rectification processing, the electrical output performance shows that the peak value of open-circuit output voltage and the peak value of short circuit output current increases by 132.06% and 116.13%. Within 500 s of the charge-discharge test, the single peak charge reached 3.114 V, and the two peak charges reached 3.840 V. The results demonstrate that the nano-generator based on cellulose showed good stability and reliability, and the application and development of natural biomaterials represented by cellulose are greatly promoted in miniature electronic sensing area.

3.
Nanotechnology ; 30(28): 285503, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30849765

RESUMO

In this work, high-performance biocompatible nano-biocomposite artificial muscles were developed via various thicknesses of renewable microporous ionic electrolytes (ICEs) made of natural biopolymer cellulose dissolved in ionic liquid with excellent ionic conductivity and flexibility. The changing thickness experiments illustrated that 0.7 mm thick ICEs could deliver outstanding areal capacitance of 44.708 mF cm-2 and ionic conductivity of 79.7 µS cm-1, as well as minimum resistance of 1.61 Ω. The current density changed from 1 to 10 Ag-1, and improvements were achieved in energy density (from 3.88 to 21.25 Wh kg-1) and power density (from 2.63 to 5.51 KW kg-1). The voltage window widened from 0.5 to 1 V, and improvements were gained in energy density (from 4.13 to 22.01 Wh kg-1) and power density (from 1.25 to 2.81 KW kg-1). Moreover, good flexibility of 0.7 mm thick ICE with porosity of 89.61% and elastic modulus of 74.38 MPa was discovered. Electromechanical experiments demonstrated from the above results that the maximum peak displacement with 0.3 mm ICE was 5.33 mm at 5 V 0.02 Hz sine wave voltage, and the maximum displacement and force with 0.7 mm ICE was 17.44 mm and 5.93 mN at 5 V DC voltages. These findings suggest that the explored excellent ionic conductivity and flexibility of ICEs holds great promise for the further study of high-performance green actuators.


Assuntos
Materiais Biocompatíveis/química , Músculos/química , Nanoestruturas/química , Engenharia Tecidual/métodos , Celulose/química , Condutividade Elétrica , Líquidos Iônicos/química , Íons/química
4.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567071

RESUMO

Ionic conductive hydrogels have shown great potential in areas such as wearable devices and electronic skins. Aiming at the sensitivity and biodegradability of the traditional flexible hydrogel electronic skin, this paper developed an ionic skin (S-iSkin) based on edible starch-sodium alginate (starch-SA), which can convert the external strain stimulus into a voltage signal without an external power supply. As an excellent ion conductive polymer, S-iSkin exhibited good stretchability, low hydrophilicity and outstanding electrochemical and sensing properties. Driven by sodium ions, the ion charge transfer resistance of S-iSkin is reduced by 4 times, the capacitance value is increased by 2 times and its conductivity is increased by 7 times. Additionally, S-iSkin has excellent sensitivity and linearity (R2 = 0.998), a long service life and good biocompatibility. Under the action of micro-stress, it can produce a voltage change ratio of 2.6 times, and its sensitivity is 52.04. The service life test showed that it can work stably for 2000 s and work more than 200 stress-voltage response cycles. These findings provide a foundation for the development of health monitoring systems and micro-stress sensing devices based on renewable biomass materials.

5.
Nat Commun ; 13(1): 5077, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038582

RESUMO

Water evaporation is a natural phase change phenomenon occurring any time and everywhere. Enormous efforts have been made to harvest energy from this ubiquitous process by leveraging on the interaction between water and materials with tailored structural, chemical and thermal properties. Here, we develop a multi-layered interfacial evaporation-driven nanogenerator (IENG) that further amplifies the interaction by introducing additional bionic light-trapping structure for efficient light to heat and electric generation on the top and middle of the device. Notable, we also rationally design the bottom layer for sufficient water transport and storage. We demonstrate the IENG performs a spectacular continuous power output as high as 11.8 µW cm-2 under optimal conditions, more than 6.8 times higher than the currently reported average value. We hope this work can provide a new bionic strategy using multiple natural energy sources for effective power generation.


Assuntos
Fontes de Energia Elétrica , Água
6.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501518

RESUMO

In this work, considering the current status of conservative and complicated traditional thrombosis treatment methods, a kind of flexible intelligent probe (FIP) with a top-driven sensing strategy is proposed to realize the expected function of thrombosis accurate localization in a liquid flow environment. After throughput fabrication, we find that the FIP has excellent electrical conductivity and mechanical properties. Notable, our FIP with the principle of piezo-resistive sensing has a quasi-linear sensitivity (approx. 0.325 L per minute) to flow sensing in the low flow velocity range (0-1 L per minute). Via the well-designed magnetically driven method, our FIP has a maximum deflection output force of 443.264 mN, a maximum deflection angle of 43°, and a maximum axial force of 54.176 mN. We demonstrate that the FIP is capable of completing the specified command actions relatively accurately and has a good response to real-time sensing feedback performance, which has broad application prospects in thrombus localization detection.

7.
Nat Commun ; 11(1): 6158, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268795

RESUMO

Currently, the key challenge in triboelectric nanogenerators (TENGs) is how to efficiently enhance the surface charge density. Here, a new strategy is proposed to increase the surface charge density by comprehensively utilizing solar energy and tidal energy, and a bioinspired photoelectric-electromechanical integrated TENG (Pem-iTENG) is developed. This enhancement of output performance is greatly attributed to the accumulation of photoelectrons from photocatalysis and the triboelectric negative charges from contact electrification. Pem-iTENG shows a maximal open-circuit voltage of 124.2 V and a maximal short-circuit current density of 221.6 µA cm-2 under tidal wave and sunlight, an improvement by nearly a factor of 10 over that of reported TENGs based on solid-liquid contact electrification. More importantly, it exhibits a high energy conversion efficiency according to the evaluation method for solar cells. This work provides insights into development of high-performance TENGs by using different natural energy sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA