Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920650

RESUMO

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl-/HCO3- exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl-/HCO3- exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl-/HCO3- exchangers, were unaltered. Thus, inhibition of villus cell Cl-/HCO3- exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl-, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.


Assuntos
Ácidos Araquidônicos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Enterócitos/metabolismo , Ileíte/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase/farmacologia , Enterócitos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ileíte/genética , Indóis/farmacologia , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Piroxicam/farmacologia
2.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008631

RESUMO

Gastrointestinal health is influenced by the functional genes and metabolites generated by the human microbiome. As the volume of current biomedical and translational research indicates, the importance and impact of this ecosystem of microorganisms, especially those comprising the gut microbiome on human health, has become increasingly apparent. Changes to the gut microbiome are associated with inflammatory bowel disease (IBD), which is characterized by persistent intestinal inflammation. Furthermore, the lifetime dietary choices of their host may positively or negatively affect both the gut microbiome and its impact on IBD. As such, "anti-inflammatory" dietary supplements, their impact, and mechanisms in restoring gut microbiota homeostasis during IBD is an area of intensive research. Dietary supplementation may represent an important adjuvant treatment avenue for limiting intestinal inflammation in IBD. Overall, this review addresses the development of the gut microbiome, the significance of the gut microbiome in IBD, and the use of dietary supplements such as vitamin D, fish oil, and resveratrol in the mitigation of IBD-associated gut dysbiosis and intestinal inflammation.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/uso terapêutico , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Resveratrol/uso terapêutico , Vitamina D/uso terapêutico , Animais , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/patologia , Resveratrol/farmacologia , Vitamina D/farmacologia
3.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299188

RESUMO

Na-K-ATPase provides a favorable transcellular Na gradient required for the functioning of Na-dependent nutrient transporters in intestinal epithelial cells. The primary metabolite for enterocytes is glutamine, which is absorbed via Na-glutamine co-transporter (SN2; SLC38A5) in intestinal crypt cells. SN2 activity is stimulated during chronic intestinal inflammation, at least in part, secondarily to the stimulation of Na-K-ATPase activity. Leukotriene D4 (LTD4) is known to be elevated in the mucosa during chronic enteritis, but the way in which it may regulate Na-K-ATPase is not known. In an in vitro model of rat intestinal epithelial cells (IEC-18), Na-K-ATPase activity was significantly stimulated by LTD4. As LTD4 mediates its action via Ca-dependent protein kinase C (PKC), Ca levels were measured and were found to be increased. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, also mediated stimulation of Na-K-ATPase like LTD4, while BAPTA-AM (Ca chelator) and calphostin-C (Cal-C; PKC inhibitor) prevented the stimulation of Na-K-ATPase activity. LTD4 caused a significant increase in mRNA and plasma membrane protein expression of Na-K-ATPase α1 and ß1 subunits, which was prevented by calphostin-C. These data demonstrate that LTD4 stimulates Na-K-ATPase in intestinal crypt cells secondarily to the transcriptional increase of Na-K-ATPase α1 and ß1 subunits, mediated via the Ca-activated PKC pathway.


Assuntos
Cálcio/metabolismo , Enterite/enzimologia , Células Epiteliais/enzimologia , Intestinos/enzimologia , Leucotrieno D4/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Enterite/tratamento farmacológico , Enterite/patologia , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201429

RESUMO

Obesity increases the risk of postmenopausal breast cancer (BC). This risk is mediated by obesity-induced changes in the adipose-derived secretome (ADS). The pathogenesis of BC in obesity is stimulated by mTOR hyperactivity. In obesity, leucine might support mTOR hyperactivity. Leucine uptake by BC cells is through L-Type Amino Acid Transporter 1 (LAT1). Our objective was to link obesity-ADS induction of LAT1 to the induction of mTOR signaling. Lean- and obese-ADS were obtained from lean and obese mice, respectively. Breast ADS was obtained from BC patients. Estrogen-receptor-positive BC cells were stimulated with ADS. LAT1 activity was determined by uptake of 3H-leucine. The LAT1/CD98 complex, and mTOR signaling were assayed by Western blot. The LAT1 antagonists, BCH and JPH203, were used to inhibit LAT1. Cell migration and invasion were measured by Transwell assays. The results showed obese-ADS-induced LAT1 activity by increasing transporter affinity for leucine. Consistent with this mechanism, LAT1 and CD98 expression were unchanged. Induction of mTOR by obese-ADS was inhibited by LAT1 antagonists. Breast ADS from patients with BMIs > 30 stimulated BC cell migration and invasiveness. Collectively, our findings show that obese-ADS induction of LAT1 supports mTOR hyperactivity in luminal BC cells.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias da Mama/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Leucina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais
5.
J Nutr ; 150(4): 747-755, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769840

RESUMO

BACKGROUND: Chronic alcohol use often leads to malnutrition. However, how the intestinal absorption of nutrients such as glucose may be affected during moderate ethanol use has not been investigated. Glucose is absorbed via sodium (Na)-dependent glucose co-transport (SGLT1; SLC5A1) along the brush border membrane (BBM) of intestinal absorptive villus cells. OBJECTIVE: The aim of this study was to investigate how moderate alcohol consumption affects the absorption of glucose via SGLT1. METHODS: Intestinal epithelial cells (IEC-18; rat) were exposed to 8.64 mM ethanol over 1, 3, 6, and 12 h. Rats (16-wk-old, male, Sprague-Dawley) were administered 2 g/kg ethanol over 1, 3, and 6 h. Na-dependent 3H-O-methyl-d-glucose uptake was measured to assess SGLT1 activity. Na-K-ATPase activity was measured as a function of inorganic phosphate release. Protein expression was analyzed by Western blot analysis and immunohistochemical staining. RESULTS: Ethanol significantly decreased Na-dependent glucose absorption in enterocytes in vitro (ethanol treatment: 48.4% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 60.0% of controls at 1 h; P < 0.01). Na-K-ATPase activity was significantly inhibited in vitro (ethanol treatment: 36.9% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 42.1% of controls at 1 h; P < 0.01). Kinetic studies showed that the mechanism of inhibition of Na-glucose co-transport was secondary to a decrease in the affinity (1/Km) of the co-transporter for glucose both in vitro and in vivo. Western blots and immunohistochemistry further demonstrated unaltered amounts of SGLT1 after ethanol treatment. CONCLUSIONS: Moderate ethanol significantly decreases glucose absorption in IEC-18 cells and in villus cells of Sprague-Dawley rats. The inhibition of SGLT1 is secondary to an altered Na gradient at the cellular level and secondary to diminished affinity of the co-transporter for glucose at the protein level in the BBM. These observations may, at least in part, explain 1 possible mechanism of the onset of malnutrition associated with alcohol consumption.


Assuntos
Células Epiteliais/metabolismo , Etanol/administração & dosagem , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Animais , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Intestino Delgado/ultraestrutura , Masculino , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/farmacologia , Transportador 1 de Glucose-Sódio/análise , Transportador 1 de Glucose-Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
FASEB J ; 33(8): 9323-9333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107610

RESUMO

During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.


Assuntos
Glucose/metabolismo , Intestinos/citologia , Microvilosidades/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Cloreto de Sódio/metabolismo , Animais , Western Blotting , Linhagem Celular , Imunofluorescência , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Interferência de RNA , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917504

RESUMO

Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enterócitos/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Microvilosidades/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Inflamação/metabolismo , Ácido Peroxinitroso/toxicidade , Ratos
8.
J Cell Mol Med ; 22(3): 1443-1451, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29271063

RESUMO

The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na-nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2-week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. RESULTS: Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Araquidônicos/farmacologia , Coccidiose/metabolismo , Enterite/metabolismo , Indóis/farmacologia , Inibidores de Lipoxigenase/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Ácido Araquidônico/metabolismo , Doença Crônica , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Coccidiose/patologia , Eimeria/efeitos dos fármacos , Eimeria/patogenicidade , Eimeria/fisiologia , Enterite/tratamento farmacológico , Enterite/parasitologia , Enterite/patologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Glutamina/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/parasitologia , Íleo/patologia , Leucotrienos/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Masculino , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Coelhos , Sódio/metabolismo
9.
Nitric Oxide ; 79: 8-13, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702252

RESUMO

Pharmacological manipulations of constitutive nitric oxide (cNO) levels have been shown to have variable effects on Na absorption in vivo and in vitro in different tissues. Species differences, untoward in vivo effects (e.g. ENS, blood flow) and pharmacological non-specificity may account for these confounding observations. Thus, to directly and specifically determine the effect of cNO on brush border membrane Na/H exchange (NHE3) and Na-dependent glucose co-transport (SGLT-1), we inhibited cNO synthase (NOS3) with its siRNA in rat small intestinal epithelial cells (IEC-18) in vitro. As expected, intracellular cNO levels were reduced in siRNA NOS3 transfected cells. In these cells, SGLT-1 was significantly reduced compared to control. In contrast, NHE3 was significantly increased in siRNA NOS3 transfected cells. To determine if SGLT-1 changes were secondary to altered Na/K-ATPase, its activity was measured and found to be increased in NOS3 silenced cells. The mechanism of inhibition of SGLT-1 was secondary to diminished affinity of the co-transporter for glucose in NOS3 silenced cells. In contrast, the mechanism of stimulation of NHE3 is by increasing BBM exchanger numbers in siRNA NOS3 cells while the affinity was unaffected. Western blot studies of immunoreactive BBM proteins also confirmed the kinetic studies. All these data indicates that direct and specific inhibition of NOS3 with its siRNA inhibits SGLT-1 while stimulating NHE3 in the BBM. Thus, cNO uniquely and compensatorily regulates BBM NHE3 and SGLT-1 to maintain cellular Na homeostasis and these unique alterations by cNO are mediated by its intracellular 2nd messenger cGMP.


Assuntos
Células Epiteliais/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/deficiência , Sódio/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos
10.
Biochim Biophys Acta ; 1848(2): 702-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462166

RESUMO

Na-K-ATPase located on the basolateral membrane (BLM) of intestinal epithelial cells provides a favorable intracellular Na+ gradient to promote all Na dependent co-transport processes across the brush border membrane (BBM). Down-regulation of Na-K-ATPase activity has been postulated to alter the absorption via Na-solute co-transporters in human inflammatory bowel disease (IBD). Further, the altered activity of a variety of Na-solute co-transporters in intact villus cells has been reported in animal models of chronic enteritis. But the molecular mechanism of down-regulation of Na-K-ATPase is not known. In the present study, using a rabbit model of chronic intestinal inflammation, which resembles human IBD, Na-K-ATPase in villus cells was shown to decrease. The relative mRNA abundance of α-1 and ß-1 subunits was not altered in villus cells during chronic intestinal inflammation. Similarly, the protein levels of these subunits were also not altered in villus cells during chronic enteritis. However, the BLM concentration of α-1 and ß-1 subunits was diminished in the chronically inflamed intestinal villus cells. An ankyrin-spectrin skeleton is necessary for the proper trafficking of Na-K-ATPase to the BLM of the cell. In the present study, ankyrin expression was markedly diminished in villus cells from the chronically inflamed intestine resulting in depolarization of ankyrin-G protein. The decrease of Na-K-ATPase activity was comparable to that seen in ankyrin knockdown IEC-18 cells. Therefore, altered localization of Na-K-ATPase as a result of transcriptional down-regulation of ankyrin-G mediates the down-regulation of Na-K-ATPase activity during chronic intestinal inflammation.


Assuntos
Anquirinas/genética , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/genética , Microvilosidades/metabolismo , Subunidades Proteicas/genética , ATPase Trocadora de Sódio-Potássio/genética , Actinas/genética , Actinas/metabolismo , Animais , Anquirinas/metabolismo , Membrana Celular/química , Polaridade Celular , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/química , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Intestino Delgado/química , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Microvilosidades/química , Microvilosidades/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Am J Physiol Cell Physiol ; 308(8): C650-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652450

RESUMO

Na-K-ATPase, an integral membrane protein in mammalian cells, is responsible for maintaining the favorable intracellular Na gradient necessary to promote Na-coupled solute cotransport processes [e.g., Na-glucose cotransport (SGLT1)]. Inhibition of brush border membrane (BBM) SGLT1 is, at least in part, due to the diminished Na-K-ATPase in villus cells from chronically inflamed rabbit intestine. The aim of the present study was to determine the effect of Na-K-ATPase inhibition on the two major BBM Na absorptive pathways, specifically Na-glucose cotransport and Na/H exchange (NHE), in intestinal epithelial (IEC-18) cells. Na-K-ATPase was inhibited using 1 mM ouabain or siRNA for Na-K-ATPase-α1 in IEC-18 cells. SGLT1 activity was determined as 3-O-methyl-D-[(3)H]glucose uptake. Na-K-ATPase activity was measured as the amount of inorganic phosphate released. Treatment with ouabain resulted in SGLT1 inhibition at 1 h but stimulation at 24 h. To further characterize this unexpected stimulation of SGLT1, siRNA silencing was utilized to inhibit Na-K-ATPase-α1. SGLT1 activity was significantly upregulated by Na-K-ATPase silencing, while NHE3 activity remained unaltered. Kinetics showed that the mechanism of stimulation of SGLT1 activity was secondary to an increase in affinity of the cotransporter for glucose without a change in the number of cotransporters. Molecular studies demonstrated that the mechanism of stimulation was not secondary to altered BBM SGLT1 protein levels. Chronic and direct silencing of basolateral Na-K-ATPase uniquely regulates BBM Na absorptive pathways in intestinal epithelial cells. Specifically, while BBM NHE3 is unaffected, SGLT1 is stimulated secondary to enhanced affinity of the cotransporter.


Assuntos
Absorção Intestinal/fisiologia , Microvilosidades/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular , Coccidiose/parasitologia , Coccidiose/patologia , Eimeria/imunologia , Eimeria/patogenicidade , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Intestino Delgado/citologia , Masculino , Ouabaína/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Coelhos , Ratos , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética
12.
Biochim Biophys Acta ; 1838(5): 1208-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24412219

RESUMO

Inhibition of constitutive nitric oxide (cNO) production inhibits SGLT1 activity by a reduction in the affinity for glucose without a change in Vmax in intestinal epithelial cells (IEC-18). Thus, we studied the intracellular pathway responsible for the posttranslational modification/s of SGLT1. NO is known to mediate its effects via cGMP which is diminished tenfold in L-NAME treated cells. Inhibition of cGMP production at the level of guanylyl cyclase or inhibition of protein kinase G also showed reduced SGLT1 activity demonstrating the involvement of PKG pathway in the regulation of SGLT1 activity. Metabolic labeling and immunoprecipitation with anti-SGLT1 specific antibodies did not show any significant changes in phosphorylation of SGLT1 protein. Tunicamycin to inhibit glycosylation reduced SGLT1 activity comparable to that seen with L-NAME treatment. The mechanism of inhibition was secondary to decreased affinity without a change in Vmax. Immunoblots of luminal membranes from tunicamycin treated or L-NAME treated IEC-18 cells showed a decrease in the apparent molecular size of SGLT1 protein to 62 and 67 kD, respectively suggesting an alteration in protein glycosylation. The deglycosylation assay with PNGase-F treatment reduced the apparent molecular size of the specific immunoreactive band of SGLT1 from control and L-NAME treated IEC-18 cells to approximately 62 kD from their original molecular size of 75 kD and 67 kD, respectively. Thus, the posttranslational mechanism responsible for the altered affinity of SGLT1 when cNO is diminished is secondary to altered glycosylation of SGLT1 protein. The intracellular pathway responsible for this alteration is cGMP and its dependent kinase.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Processamento de Proteína Pós-Traducional , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Glicosilação , Óxido Nítrico/metabolismo , Fosforilação , Ratos
13.
Nitric Oxide ; 44: 98-104, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25524833

RESUMO

To facilitate assimilation of glutamine, different Na-dependent glutamine absorptive pathways are present in the rabbit small intestine, specifically B0AT1 in villus and SN2 in crypt cell brush border membrane. Further, both are uniquely regulated in the chronically inflamed intestine. B0AT1 is inhibited secondary to reduced number of brush border membrane (BBM) co-transporters while SN2 is stimulated secondary to an increased affinity for glutamine. These unique changes are reversible by treatment with a broad spectrum immune modulator such as glucocorticoids. However, whether inducible nitric oxide (iNO), known to be elevated in the mucosa of the chronically inflamed intestine, may be responsible for these co-transporter alterations is not known. In the present study, treatment of chronically inflamed rabbits with L-NIL, a selective inhibitor of iNO synthase, reversed the inhibition of B0AT1 in villus and the stimulation of SN2 in crypt cells. At the level of the co-transporter in the brush border membrane, inhibition of iNO production reversed the inhibition of villus B0AT1 by restoring the co-transporter numbers while the stimulation of crypt SN2 was reversed back to normal by restoring its affinity for glutamine. Western blot analyses of BBM proteins also confirmed the kinetic studies. Thus, L-NIL treatment restores the uniquely altered Na-glutamine co-transporters in the enterocytes of chronically inflamed intestine. All these data indicate that iNO functions as an upstream immune modulator directly regulating glutamine assimilation during chronic intestinal inflammation.


Assuntos
Gastroenterite/metabolismo , Glutamina/metabolismo , Íleo/citologia , Inflamação/metabolismo , Óxido Nítrico/metabolismo , Animais , Células Cultivadas , Doença Crônica , Cinética , Masculino , Microvilosidades/metabolismo , Microvilosidades/fisiologia , Coelhos
14.
BMC Gastroenterol ; 15: 47, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884559

RESUMO

BACKGROUND: In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. METHODS: Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. RESULTS: In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. CONCLUSION: In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Degranulação Celular/efeitos dos fármacos , Enterite/metabolismo , Glutamina/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/fisiologia , Microvilosidades/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Doença Crônica , Enterócitos/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacologia , Íleo , Mucosa Intestinal/citologia , Cetotifeno/farmacologia , Cinética , Masculino , Mastócitos/enzimologia , Microvilosidades/enzimologia , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
15.
Am J Physiol Cell Physiol ; 307(11): C1010-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25231108

RESUMO

Leukotriene D4 (LTD4) is an important immune inflammatory mediator that is known to be elevated in the mucosa of chronically inflamed intestine and alter nutrient absorption. LTD4 inhibits Na-alanine cotransport in intestinal epithelial cells by decreasing the affinity of the cotransporter ASCT1. LTD4 is known to increase intracellular Ca(++) and cAMP concentrations. However, the intracellular signaling mechanism of LTD4-mediated ASCT1 inhibition is unknown. In the present study, pretreatment with calcium chelator BAPTA-AM or inhibition of Ca(++)-dependent protein kinase C (PKC), specifically PKCα, resulted in the reversal of LTD4-mediated inhibition of ASCT1, revealing the involvement of the Ca(++)-activated PKC pathway. PKCα is known to phosphorylate Raf kinase inhibitor protein (RKIP), thus activating its downstream signaling pathway. Immunoblotting with anti-RKIP-Ser(153) antibody showed an increase in phosphorylation levels of RKIP in LTD4-treated cells. Downregulation of endogenous RKIP showed no decrease in ASCT1 activity by LTD4, thus confirming its involvement in ASCT1 regulation. Phosphorylation of RKIP by PKC is known to activate different signaling pathways, and in this study it was found to activate cAMP-activated protein kinase A (PKA) pathway. Although protein abundance of ASCT1 was not altered in any of the experimental conditions, there was an increase in the levels of phosphothreonine in ASCT1 protein, thus showing that phosphorylation changes were responsible for the altered affinity of ASCT1 by LTD4. In conclusion, LTD4 inhibits ASCT1 through PKC-mediated phosphorylation of RKIP, leading to the subsequent activation of PKA pathway, possibly through ß2-andrenergic receptor activation.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Leucotrieno D4/farmacologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína Quinase C/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Epiteliais/efeitos dos fármacos , Microvilosidades , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína Quinase C/genética , Ratos
16.
Biochim Biophys Acta ; 1828(2): 179-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22963933

RESUMO

Previously studies have demonstrated that Cl(-)/HCO(3)(-) exchange was inhibited during chronic intestinal inflammation secondary to decrease in the affinity of the exchanger for Cl(-) rather than the number of transporters. Arachidonic acid metabolites (AAM) are elevated in the mucosa of the chronically inflamed small intestine. However, their role in the alteration of Cl(-)/HCO(3)(-) during chronic enteritis was unknown. Inhibition of AAM formation with arachidonyl trifluoro methylketone (ATMK) in chronically inflamed rabbit intestine reversed the diminished Cl(-)/HCO(3)(-) exchange activity. Kinetics studies showed that the reversal was secondary to restoration of the altered affinity of transporter. Downstream regulation of Cl(-)/HCO(3)(-) inhibition by AAM was determined to be by the cyclooxygenase pathway since only inhibition of cyclooxygenase with piroxicam treatment reversed the inhibited Cl(-)/HCO(3)(-) exchange. Further, DRA was shown to be the primary Cl(-)/HCO(3)(-) exchanger in villus cells. Kinetics and molecular studies indicated that the mechanism of inhibition of Cl(-)/HCO(3)(-) exchange by cyclooxygenase pathway metabolites was secondary to diminished affinity of the transporter for Cl(-) without a change in DRA BBM expression. Thus our data indicated that cyclooxygenase pathway metabolites mediate the inhibition of DRA during chronic intestinal inflammation.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Íleo/metabolismo , Leucotrienos/metabolismo , Prostaglandinas/metabolismo , Animais , Ácido Araquidônico/metabolismo , Relação Dose-Resposta a Droga , Imuno-Histoquímica/métodos , Indóis/farmacologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Cetonas/metabolismo , Cinética , Masculino , Microvilosidades/metabolismo , Coelhos
17.
Sci Rep ; 14(1): 18102, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103501

RESUMO

Water contaminated with arsenic presents serious health risks, necessitating effective and sustainable removal methods. This article proposes a method for removing arsenic from water by impregnating biochar with iron oxide (Fe2O3) from brown seaweed (Sargassum polycystum). After the seaweed biomass was pyrolyzed at 400 °C, iron oxide was added to the biochar to increase its adsorptive sites and surface functional groups, which allowed the binding of arsenic ions. Batch studies were conducted to maximize the effects of variables, including pH, contact time, arsenic concentration, and adsorbent dosage, on arsenic adsorption. The maximum arsenic adsorption efficiency of 96.7% was achieved under optimal conditions: pH 6, the adsorbent dosage of 100 mg, the initial arsenic concentration of 0.25 mg/L, and a contact time of 90 min. Langmuir and Freundlich's isotherms favored the adsorption process, while the kinetics adhered to a pseudo-second-order model, indicating chemisorption as the controlling step. Column studies revealed complete saturation after 200 min, and the adsorption behavior fits both the Adams-Bohart and Thomas models, demonstrating the potential for large-scale application. The primary mechanism underlying the interaction between iron-modified biochar and arsenic ions is surface complexation, enhanced by increased surface area and porosity. This study highlights the significant contribution of iron-modified biochar derived from macroalgae as an effective and sustainable solution for arsenic removal from water.


Assuntos
Arsênio , Carvão Vegetal , Compostos Férricos , Alga Marinha , Poluentes Químicos da Água , Purificação da Água , Arsênio/química , Arsênio/isolamento & purificação , Carvão Vegetal/química , Alga Marinha/química , Adsorção , Compostos Férricos/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Concentração de Íons de Hidrogênio
18.
Biochim Biophys Acta ; 1818(3): 434-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22100603

RESUMO

Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enterite/metabolismo , Glutamina/metabolismo , Mucosa Intestinal/metabolismo , Animais , Transporte Biológico , Doença Crônica , Enterite/patologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/patologia , Masculino , Coelhos
19.
Dig Dis Sci ; 58(3): 660-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344966

RESUMO

BACKGROUND: Short chain fatty acids (SCFA) are absorbed by carrier mediated uptake in the small intestine by pH-dependent SCFA/HCO3 (-) exchangers on the apical membrane of epithelial cells. Conventional assumption is that MCT1 mediates SCFA/HCO3 (-) exchange in the intestine. Further, due to the presence of multiple such anion exchangers, the identity of the intestinal SCFA/HCO3 (-) has been controversial. AIMS: The aim of this study was to determine the identities of the butyrate transporter in the intestinal epithelial cells (IEC-18). METHODS: IEC-18 cells were treated with specific siRNAs for MCT1 and MCT4, and butyrate and lactate uptake studies were performed. RESULTS: Alpha-cyano-4-hydroxycinnamic acid inhibited lactate uptake but not butyrate uptake in IEC-18 cells, indicating that these two substrates are transported via two different transporter systems. MCT1 siRNA treatment abolished both MCT1 mRNA by more than 95 % and protein expression by 83 % as evidenced by RTQ-PCR and western blotting experiments. However, MCT1 siRNA treatment inhibited butyrate uptake upto 24 %, whereas it inhibited lactate uptake significantly by 70 %. Treatment with MCT4 siRNA inhibited MCT4 mRNA expression by 75 % and protein expression by 85 % in these cells. MCT4 siRNA inhibited butyrate uptake by 40 %. Further, several non-steroidal anti-inflammatory drugs (NSAIDs) are transported by the butyrate transporter. Finally, MCT4 siRNA inhibited salicylate uptake by 27 % indicating direct evidence for the transport of salicylate by MCT4. CONCLUSIONS: These data indicate that MCT1 is the high affinity lactate transporter and MCT4 is the high affinity butyrate transporter in the intestinal epithelial cell line IEC-18.


Assuntos
Butiratos/metabolismo , Células Epiteliais/fisiologia , Mucosa Intestinal/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Transporte Biológico , Linhagem Celular , Concentração de Íons de Hidrogênio , Mucosa Intestinal/citologia , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/metabolismo , Especificidade por Substrato , Simportadores/genética
20.
PLoS One ; 18(11): e0294387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943850

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0203552.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA