Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurosci ; 39(47): 9294-9305, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31591157

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 Patients frequently have epilepsy, autism spectrum disorder, and/or intellectual disability, as well as other systemic manifestations. In this study, we differentiated human induced pluripotent stem cells (iPSCs) from a female patient with TSC with one or two mutations in TSC2 into neurons using induced expression of NGN2 to examine neuronal dysregulation associated with the neurological symptoms in TSC. Using this method, neuronal differentiation was comparable between the three genotypes of iPSCs. We observed that TSC2+/- neurons show mTOR complex 1 (mTORC1) hyperactivation and associated increased cell body size and process outgrowth, as well as exacerbation of the abnormalities by loss of the second allele of TSC2 in TSC2-/- neurons. Interestingly, iPSC-derived neurons with either a single or biallelic mutation in TSC2 demonstrated hypersynchrony and downregulation of FMRP targets. However, only neurons with biallelic mutations of TSC2 demonstrated hyperactivity and transcriptional dysregulation observed in cortical tubers. These data demonstrate that loss of one allele of TSC2 is sufficient to cause some morphological and physiological changes in human neurons but that biallelic mutations in TSC2 are necessary to induce gene expression dysregulation present in cortical tubers. Finally, we found that treatment of iPSC-derived neurons with rapamycin reduced neuronal activity and partially reversed gene expression abnormalities, demonstrating that mTOR dysregulation contributes to both phenotypes. Therefore, biallelic mutations in TSC2 and associated molecular dysfunction, including mTOR hyperactivation, may play a role in the development of cortical tubers.SIGNIFICANCE STATEMENT In this study, we examined neurons derived from induced pluripotent stem cells with two, one, or no functional TSC2 (tuberous sclerosis complex 2) alleles and found that loss of one or both alleles of TSC2 results in mTORC1 hyperactivation and specific neuronal abnormalities. However, only biallelic mutations in TSC2 resulted in elevated neuronal activity and upregulation of cell adhesion genes that is also observed in cortical tubers. These data suggest that loss of heterozygosity of TSC1 or TSC2 may play an important role in the development of cortical tubers, and potentially epilepsy, in patients with TSC.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação/genética , Neurônios/fisiologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Esclerose Tuberosa/genética , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Neurônios/patologia , Esclerose Tuberosa/patologia
2.
Mol Psychiatry ; 23(11): 2167-2183, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29449635

RESUMO

Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.


Assuntos
Células de Purkinje/metabolismo , Esclerose Tuberosa/metabolismo , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/metabolismo , Doenças Cerebelares/metabolismo , Cerebelo/metabolismo , Criança , Pré-Escolar , Feminino , Proteína do X Frágil da Deficiência Intelectual/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Biológicos , Células de Purkinje/patologia , Sirolimo/farmacologia , Sinapses/metabolismo , Sinapses/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/fisiopatologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
3.
Stem Cells ; 31(8): 1548-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666606

RESUMO

The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results, NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM(+) /CD29(low) DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM(+) /CD29(low) DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Doença de Parkinson/terapia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos , Adulto , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Células-Tronco Embrionárias/transplante , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Macaca fascicularis , Masculino , Neurônios/citologia , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/transplante , Distribuição Aleatória , Ratos
4.
Comput Struct Biotechnol J ; 23: 638-647, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283851

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas nucleases and human induced pluripotent stem cell (iPSC) technology can reveal deep insight into the genetic and molecular bases of human biology and disease. Undesired editing outcomes, both on-target (at the edited locus) and off-target (at other genomic loci) hinder the application of CRISPR-Cas nucleases. We developed Off-flow, a Nextflow-coded bioinformatic workflow that takes a specific guide sequence and Cas protein input to call four separate off-target prediction programs (CHOPCHOP, Cas-Offinder, CRISPRitz, CRISPR-Offinder) to output a comprehensive list of predicted off-target sites. We applied it to whole genome sequencing (WGS) data to investigate the occurrence of unintended effects in human iPSCs that underwent repair or insertion of disease-related variants by homology-directed repair. Off-flow identified a 3-base-pair-substitution and a mono-allelic genomic deletion at the target loci, KCNQ2, in 2 clones. Unbiased WGS analysis further identified off-target missense variants and a mono-allelic genomic deletion at the targeted locus, GNAQ, in 10 clones. On-target substitution and deletions had escaped standard PCR and Sanger sequencing analysis, while missense variants at other genomic loci were not detected by Off-flow. We used these results to filter out iPSC clones for subsequent functional experiments. Off-flow, which we make publicly available, works for human and mouse genomes currently and can be adapted for other genomes. Off-flow and WGS analysis can improve the integrity of studies using CRISPR/Cas-edited cells and animal models.

5.
PLoS One ; 18(10): e0292086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792789

RESUMO

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. TSC is caused by mutations in the TSC1 or TSC2 genes, which encode the hamartin/tuberin proteins respectively. These proteins function as a heterodimer that negatively regulates the mechanistic Target of Rapamycin Complex 1 (mTORC1). TSC research has focused on the effects of mTORC1, a critical signaling hub, on regulation of diverse cell processes including metabolism, cell growth, translation, and neurogenesis. However, non-canonical functions of TSC2 are not well studied, and the potential disease-relevant biological mechanisms of mutations affecting these functions are not well understood. We observed aberrant multipolar mitotic division, a novel phenotype, in TSC2 mutant iPSCs. The multipolar phenotype is not meaningfully affected by treatment with the inhibitor rapamycin. We further observed dominant negative activity of the mutant form of TSC2 in producing the multipolar division phenotype. These data expand the knowledge of TSC2 function and pathophysiology which will be highly relevant to future treatments for patients with TSC.


Assuntos
Transdução de Sinais , Proteínas Supressoras de Tumor , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Mutantes , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Nat Commun ; 12(1): 2897, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006844

RESUMO

Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Rede Nervosa/metabolismo , Transmissão Sináptica/genética , Proteína rhoA de Ligação ao GTP/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Variações do Número de Cópias de DNA , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Rede Nervosa/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Elife ; 102021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259631

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células de Purkinje/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ribossomos/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo
8.
Adv Neurobiol ; 25: 1-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578142

RESUMO

Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.


Assuntos
Epilepsia , Células-Tronco Neurais , Esclerose Tuberosa , Animais , Encéfalo , Humanos , Neurônios
9.
Haematologica ; 94(11): 1563-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19880779

RESUMO

BACKGROUND: We surveyed lymphomas to determine the range of expression of the mantle cell lymphoma-associated SOX11 transcription factor and its relation to cyclin D1. DESIGN AND METHODS: On hundred and seventy-two specimens were immunostained for the SOX11 N and C termini. Cyclin D1 was detected by immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction; in situ hybridization for t(11;14) was applied when needed. RESULTS: Nuclear SOX11 was strongly expressed in most B and T-lymphoblastic leukemia/lymphomas and half of childhood Burkitt's lymphomas, but only weakly expressed in some hairy cell leukemias. Chronic lymphocytic leukemia/lymphoma, marginal zone, follicular and diffuse large B-cell lymphomas were negative for SOX11, as were all cases of intermediate Burkitt's lymphomas/diffuse large B-cell lymphoma, myeloma, Hodgkin's lymphomas and mature T-cell and NK/T-cell lymphomas. CONCLUSIONS: In addition to mantle cell lymphoma, SOX11 is strongly expressed only in lymphoblastic malignancies and Burkitt's lymphomas. Its expression is independent of cyclin D1 (except for weak expression in hairy cell leukemias) and unlikely to be due to translocations in lymphoid neoplasia.


Assuntos
Linfoma de Burkitt/química , Linfoma de Célula do Manto/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição SOXC/análise , Ciclina D1/análise , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase , Fatores de Transcrição SOXC/genética
10.
J Neurosci ; 26(20): 5402-10, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16707792

RESUMO

Corticosteroids can influence brain function, and glucocorticoid hormone receptors (GRs) are present in brain tissue. We observed that GR and also mineralocorticoid receptor (MR) are expressed by embryonic rat neural stem cells (NSCs). NSCs in developing ventricular epithelium were positive for GR. Stimulation of cultured NSCs with the specific receptor ligands dexamethasone and corticosterone reduced cell proliferation, shown by 5'-bromo-2-deoxy-uridine labeling. The effect of the hormones was dose dependent and inhibited by the GR blocker mifepristone but not by spironolactone, blocking MR. Dexamethasone inhibited the cell cycle by decreasing the levels of cyclin D1 in NSCs. The hormone-induced decline was inhibited by MG132 (benzyloxycarbonyl-leucyl-leucyl-leucinal), showing an involvement of the ubiquitin proteasome system, In keeping with this, dexamethasone increased the ubiquitination of cyclin D1. In embryonic brain, dexamethasone inhibited cell proliferation of NSCs. This demonstrates that embryonic NSCs are critically influenced by glucocorticoids, which can have long-term effects in the brain.


Assuntos
Encéfalo/embriologia , Ciclina D1/metabolismo , Glucocorticoides/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Ubiquitinas/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Antagonistas de Hormônios/farmacologia , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Leupeptinas/metabolismo , Leupeptinas/farmacologia , Masculino , Mifepristona/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
FEBS J ; 273(22): 5219-29, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17069616

RESUMO

Synaptic targeting of GluR-A subunit-containing glutamate receptors involves an interaction with synapse-associated protein 97 (SAP97). The C-terminus of GluR-A, which contains a class I PDZ ligand motif (-x-Ser/Thr-x-phi-COOH where phi is an aliphatic amino acid) associates preferentially with the second PDZ domain of SAP97 (SAP97(PDZ2)). To understand the structural basis of this interaction, we have determined the crystal structures of wild-type and a SAP97(PDZ2) variant in complex with an 18-mer C-terminal peptide (residues 890-907) of GluR-A and of two variant PDZ2 domains in unliganded state at 1.8-2.44 A resolutions. SAP97(PDZ2) folds to a compact globular domain comprising six beta-strands and two alpha-helices, a typical architecture for PDZ domains. In the structure of the peptide complex, only the last four C-terminal residues of the GluR-A are visible, and align as an antiparallel beta-strand in the binding groove of SAP97(PDZ2). The free carboxylate group and the aliphatic side chain of the C-terminal leucine (Leu907), and the hydroxyl group of Thr905 of the GluR-A peptide are engaged in essential class I PDZ interactions. Comparison between the free and complexed structures reveals conformational changes which take place upon peptide binding. The betaAlpha-betaBeta loop moves away from the C-terminal end of alphaB leading to a slight opening of the binding groove, which may better accommodate the peptide ligand. The two conformational states are stabilized by alternative hydrogen bond and coulombic interactions of Lys324 in betaAlpha-betaBeta loop with Asp396 or Thr394 in betaBeta. Results of in vitro binding and immunoprecipitation experiments using a PDZ motif-destroying L907A mutation as well as the insertion of an extra alanine residue between the C-terminal Leu907 and the stop codon are also consistent with a 'classical' type I PDZ interaction between SAP97 and GluR-A C-terminus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Membrana/química , Receptores de Glutamato/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Cristalografia por Raios X/métodos , Dimerização , Proteína 1 Homóloga a Discs-Large , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
12.
J Child Neurol ; 30(14): 1954-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26303409

RESUMO

Approximately 50% of patients with the genetic disease tuberous sclerosis complex present with autism spectrum disorder. Although a number of studies have investigated the link between autism and tuberous sclerosis complex, the etiology of autism spectrum disorder in these patients remains unclear. Abnormal cerebellar function during critical phases of development could disrupt functional processes in the brain, leading to development of autistic features. Accordingly, the authors review the potential role of cerebellar dysfunction in the pathogenesis of autism spectrum disorder in tuberous sclerosis complex. The authors also introduce conditional knockout mouse models of Tsc1 and Tsc2 that link cerebellar circuitry to the development of autistic-like features. Taken together, these preclinical and clinical investigations indicate the cerebellum has a profound regulatory role during development of social communication and repetitive behaviors.


Assuntos
Transtorno do Espectro Autista/patologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Esclerose Tuberosa/patologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/fisiopatologia
13.
Cell Stem Cell ; 16(3): 269-74, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25732245

RESUMO

Autologous transplantation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons is a potential clinical approach for treatment of neurological disease. Preclinical demonstration of long-term efficacy, feasibility, and safety of iPSC-derived dopamine neurons in non-human primate models will be an important step in clinical development of cell therapy. Here, we analyzed cynomolgus monkey (CM) iPSC-derived midbrain dopamine neurons for up to 2 years following autologous transplantation in a Parkinson's disease (PD) model. In one animal, with the most successful protocol, we found that unilateral engraftment of CM-iPSCs could provide a gradual onset of functional motor improvement contralateral to the side of dopamine neuron transplantation, and increased motor activity, without a need for immunosuppression. Postmortem analyses demonstrated robust survival of midbrain-like dopaminergic neurons and extensive outgrowth into the transplanted putamen. Our proof of concept findings support further development of autologous iPSC-derived cell transplantation for treatment of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Transplante de Células-Tronco , Animais , Autoenxertos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Macaca fascicularis , Mesencéfalo/patologia , Doença de Parkinson/patologia
14.
Expert Opin Biol Ther ; 14(4): 437-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24437368

RESUMO

INTRODUCTION: Human pluripotent stem cells have the potential to differentiate into different cell lineages of the human body, including dopaminergic (DA) neurons. Previous studies have shown that stem-cell--derived DA neurons can improve the motor deficits of Parkinson's disease (PD) animal models. That is why current research interests focus on the development of stem-cell--derived neural cells for transplantation therapies for PD patients. AREAS COVERED: This review article emphasizes the safety and efficacy requirements of human pluripotent stem-cell--derived neural cells and usage of reliable preclinical animal models prior to clinical trials. The current advances and hurdles related to cell production, differentiation and transplantation are also summarized. EXPERT OPINION: Before entering the clinic, transplantable cell populations must be differentiated and characterized according to good manufacturing practice (GMP) regulations both in vitro and in vivo. Taking into account the rapid development of the stem-cell field and technological improvements in cell preparations and GMP facilities, we think that pluripotent stem-cell--derived DA neurons will offer a relevant cell therapy option for treatment of PD in the near future.


Assuntos
Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/transplante , Humanos , Intoxicação por MPTP/terapia , Camundongos , Células-Tronco Pluripotentes/transplante , Primatas , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/normas , Células-Tronco/fisiologia
15.
PLoS One ; 8(9): e75223, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098685

RESUMO

Isoamylase-type debranching enzymes (ISAs) play an important role in determining starch structure. Amylopectin - a branched polymer of glucose - is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin synthesis. Consequently, starch levels are decreased and an aberrant soluble glucan (phytoglycogen) with altered branch lengths and branching pattern accumulates. Here we use TAP (tandem affinity purification) tagging to provide direct evidence in Arabidopsis that ISA1 interacts with its homolog ISA2. No evidence for interaction with other starch biosynthetic enzymes was found. Analysis of the single mutants shows that each protein is destabilised in the absence of the other. Co-expression of both ISA1 and ISA2 Escherichia coli allowed the formation of the active recombinant enzyme and we show using site-directed mutagenesis that ISA1 is the catalytic subunit. The presence of the active isoamylase alters glycogen biosynthesis in E. coli, resulting in colonies that stain more starch-like with iodine. However, analysis of the glucans reveals that rather than producing an amylopectin like substance, cells expressing the active isoamylase still accumulate small amounts of glycogen together with a population of linear oligosaccharides that stain strongly with iodine. We conclude that for isoamylase to promote amylopectin synthesis it needs to act on a specific precursor (pre-amylopectin) generated by the combined actions of plant starch synthase and branching enzyme isoforms and when presented with an unsuitable substrate (i.e. E. coli glycogen) it simply degrades it.


Assuntos
Arabidopsis/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Isoamilase/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Bases , Cromatografia em Gel , Cromatografia por Troca Iônica , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Teste de Complementação Genética , Glicogênio/biossíntese , Glicogênio/metabolismo , Isoamilase/genética , Isoamilase/isolamento & purificação , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Amido/biossíntese , Especificidade por Substrato
16.
Sci Transl Med ; 4(141): 141ra90, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764206

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder caused by genetic and environmental factors that results in degeneration of the nigrostriatal dopaminergic pathway in the brain. We analyzed neural cells generated from induced pluripotent stem cells (iPSCs) derived from PD patients and presymptomatic individuals carrying mutations in the PINK1 (PTEN-induced putative kinase 1) and LRRK2 (leucine-rich repeat kinase 2) genes, and compared them to those of healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage, and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial dysfunction in iPSC-derived neural cells from familial PD patients and at-risk individuals could be rescued with coenzyme Q(10), rapamycin, or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insight into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in this neurodegenerative disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neurônios/citologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Humanos , Indóis/uso terapêutico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Neurônios/efeitos dos fármacos , Fenóis/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sirolimo/uso terapêutico , Ubiquinona/uso terapêutico
17.
Regen Med ; 6(4): 449-60, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21749203

RESUMO

AIM: To show that human embryonic stem cells (hESCs) can be efficiently differentiated into oligodendrocyte precursor cells (OPCs) in a xeno-free medium with a specific medium supplement and specific human recombinant growth factors. MATERIALS & METHODS: The xeno-free OPC-differentiation medium for pluripotent stem cells was developed by using StemPro® neural stem cell xeno-free medium supplement together with human recombinant growth factors SHH, PDGF-AA, IGF-1, EGF, basic FGF and CNTF, in addition to RA, T3, human laminin and ascorbic acid. We analyzed the differentiated hESC-derived OPCs and oligodendrocytes with quantitative real-time (RT)-PCR, RT-PCR, flow cytometry and immunocytochemistry, and we performed NG2-positive selection for OPC cultures with fluorescence-activated cell sorting. RESULTS: Based on quantitative RT-PCR analysis, OPCs after 9 weeks of differentiation in xeno-free medium expressed OLIG2, SOX10 and NKX2.2 at elevated levels compared with control conditions. According to the flow cytometric analysis, the cells expressed A2B5 (>70%) and NG2 (40-60%) at 5 weeks time point whereas maturing oligodendrocytes expressed O4 (60-80%) at 11 weeks time point. In addition, hESC-derived OPC populations were purified based on NG2-positive selection using fluorescence-activated cell sorting. NG2-positive OPC populations survived and differentiated further into O4 expressing oligodendrocytes in xeno-free medium, and the sorted cell populations were free from pluripotent Tra1-81 and Oct-4 -positive cells. CONCLUSIONS: This study confirms that the xeno-free culturing method can support the differentiation and purification of hESC-derived OPC populations and provides an initial step toward safe cell graft production for the future clinical applications.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Proteínas Nucleares , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coloração e Rotulagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Stem Cell Res ; 5(2): 91-103, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20538536

RESUMO

Human embryonic stem cells (hESCs) are a promising source of oligodendrocyte precursor cells (OPCs) and oligodendrocytes. These cells can be used to repair myelin in central nervous system deficits such as multiple sclerosis or traumas such as spinal cord injury. Here, we introduce a novel differentiation method for the production of OPCs from hESCs. OPCs were differentiated as spheres in defined serum-free medium supplemented with recombinant human growth factors. A broad gene expression analysis revealed that this OPC population expressed Olig1/2, Sox10, PDGFR, Nkx2.2, Nkx6.2, oligodendrocyte-myelin glycoprotein, myelin basic protein (MBP), and proteolipid protein (PLP). According to quantitative RT-PCR analyses addition of ciliary neurotrophic factor (CNTF) upregulated the Olig2 mRNA levels in the OPC population. According to the flow cytometry analyses the OPC population was >90% NG2-positive, >80% PDGFR-positive, and >60% CD44-positive, and further matured into O4- (45%) and GalC- (80%) positive oligodendrocyte populations when cultured on top of human extracellular matrix proteins, which were used instead of Matrigel. In addition, OPCs matured into myelin-forming cells when cocultured with neuronal cells. The multilayered myelin sheet formation around axons was detected with transmission electron microscopy in cocultures. Further, the OPC populations could be purified with sorting of NG2(+) cells. These NG2(+) cells reformed spheres that remained stable during prolonged culturing (7weeks), and matured into GalC-positive oligodendrocytes. Importantly, these NG2(+) spheres were free of pluripotent Tra1-81, Oct-4, and CD326-positive hESCs. Thus, this method is suitable for the efficient production of OPCs and in the future for therapeutic graft production.


Assuntos
Antígenos/metabolismo , Células-Tronco Embrionárias/citologia , Oligodendroglia/citologia , Proteoglicanas/metabolismo , Antígenos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular , Meios de Cultura Livres de Soro , Perfilação da Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Receptores de Hialuronatos/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/imunologia , Oligodendroglia/metabolismo , Proteoglicanas/genética , Fatores de Transcrição
19.
Stem Cell Res ; 2(2): 113-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19383417

RESUMO

Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.


Assuntos
Antígenos CD/análise , Antígenos de Neoplasias/análise , Moléculas de Adesão Celular/análise , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Separação Celular/métodos , Molécula de Adesão da Célula Epitelial , Citometria de Fluxo , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA