Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nature ; 572(7771): 648-650, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391584

RESUMO

More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.


Assuntos
Organismos Aquáticos/metabolismo , Mudança Climática , Exposição Ambiental/análise , Pesqueiros/provisão & distribuição , Peixes/metabolismo , Cadeia Alimentar , Compostos de Metilmercúrio/análise , Comportamento Predatório , Animais , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Dieta/veterinária , Cação (Peixe)/metabolismo , Peixes/classificação , Contaminação de Alimentos/análise , Gadus morhua/metabolismo , Humanos , Alimentos Marinhos/análise , Água do Mar/química , Poluentes Químicos da Água/análise
2.
Proc Natl Acad Sci U S A ; 119(14): e2119857119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344436

RESUMO

SignificanceRussian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late-20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades. Using hydrologic and mercury deposition modeling together with multivariate time series analysis, we determine that 70 to 90% declines in particulate mercury fluxes were driven by pollution reductions and sedimentation in reservoirs. Results suggest that Russian rivers likely dominated over all other sources of mercury to the Arctic Ocean until recently.

3.
Environ Sci Technol ; 58(2): 1055-1063, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166384

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Poluentes Ambientais , Fluorocarbonos , Globulinas , Humanos , Toxicocinética , Inquéritos Nutricionais , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Proteínas Sanguíneas , Carbono , Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise
4.
Ecotoxicology ; 33(4-5): 325-396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683471

RESUMO

An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.


Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Monitoramento Biológico/métodos , Animais , Monitoramento Ambiental/métodos , Biota , Poluentes Químicos da Água/análise , Aves , Compostos de Metilmercúrio/análise , Peixes/metabolismo
5.
Environ Sci Technol ; 57(21): 7902-7912, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184106

RESUMO

Drinking water contaminated by per- and polyfluoroalkyl substances (PFAS) is a widespread public health concern, and exposure-response relationships are known to vary across sociodemographic groups. However, research on disparities in drinking water PFAS exposures and the siting of PFAS sources in marginalized communities is limited. Here, we use monitoring data from 7873 U.S. community water systems (CWS) in 18 states to show that PFAS detection is positively associated with the number of PFAS sources and proportions of people of color who are served by these water systems. Each additional industrial facility, military fire training area, and airport in a CWS watershed was associated with a 10-108% increase in perfluorooctanoic acid and a 20-34% increase in perfluorooctane sulfonic acid in drinking water. Waste sector sources were also significantly associated with drinking water PFAS concentrations. CWS watersheds with PFAS sources served higher proportions of Hispanic/Latino and non-Hispanic Black residents compared to those without PFAS sources. CWS serving higher proportions of Hispanic/Latino and non-Hispanic Black residents had significantly increased odds of detecting several PFAS. This likely reflects disparities in the siting of PFAS contamination sources. Results of this work suggest that addressing environmental justice concerns should be a component of risk mitigation planning for areas affected by drinking water PFAS contamination.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Água Potável/análise , Fatores Sociodemográficos , Poluentes Químicos da Água/análise , Poluição da Água , Fluorocarbonos/análise
6.
Environ Sci Technol ; 57(21): 8096-8106, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184088

RESUMO

Drinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities. Much of the PFAS at these sites consist of precursors that can transform into terminal compounds of known health concern but are omitted from standard analytical methods. Here, we estimate the expected duration and contribution of precursor biotransformation to groundwater PFAS contamination at an AFFF-contaminated military base on Cape Cod, Massachusetts, United States, by optimizing a geochemical box model using measured PFAS concentrations from a multidecadal time series of groundwater and a soil survey in the source zone. A toolbox of analytical techniques used to reconstruct the mass budget of PFAS showed that precursors accounted for 46 ± 8% of the extractable organofluorine (a proxy for total PFAS) across years. Terminal PFAS still exceed regulatory limits by 2000-fold decades after AFFF use ceased. Measurements and numerical modeling show that sulfonamido precursors are retained in the vadose zone and their slow biotransformation into perfluoroalkyl sulfonates (half-life > 66 yr) sustains groundwater concentrations of perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS). The estimated PFAS reservoir in the vadose zone and modeled flux into groundwater suggest PFAS contamination above regulatory guidelines will persist for centuries without remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Militares , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Água , Poluição da Água , Fluorocarbonos/análise , Alcanossulfonatos , Água Subterrânea/química
7.
Environ Sci Technol ; 57(14): 5592-5602, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972708

RESUMO

Drinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF. C6 precursors can be transformed through nitrification (microbial oxidation) of amine moieties into perfluorohexane sulfonate (PFHxS), a compound of regulatory concern. Here, we report biotransformation of the most abundant C6 sulfonamido precursors in 3M AFFF with available commercial standards (FHxSA, PFHxSAm, and PFHxSAmS) in microcosms representative of the groundwater/surface water boundary. Results show rapid (<1 day) biosorption to living cells by precursors but slow biotransformation into PFHxS (1-100 pM day-1). The transformation pathway includes one or two nitrification steps and is supported by the detection of key intermediates using high-resolution mass spectrometry. Increasing nitrate concentrations and total abundance of nitrifying taxa occur in parallel with precursor biotransformation. Together, these data provide multiple lines of evidence supporting microbially limited biotransformation of C6 sulfonamido precursors involving ammonia-oxidizing archaea (Nitrososphaeria) and nitrite-oxidizing bacteria (Nitrospina). Further elucidation of interrelationships between precursor biotransformation and nitrogen cycling in ecosystems would help inform site remediation efforts.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Água Subterrânea/química , Biotransformação , Fluorocarbonos/análise , Alcanossulfonatos
8.
Environ Sci Technol ; 57(48): 20159-20168, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934924

RESUMO

Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.


Assuntos
Anguilla , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Água Subterrânea/química , Água , Flúor/análise , Flúor/química , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(23): 17090-17099, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36331119

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of persistent, organic fluorinated chemicals added to materials and products mainly to repel stains and water. PFAS have been associated with many adverse human health effects. We aimed to determine whether buildings with "healthier" materials─defined here as reportedly free of all PFAS─exhibit lower PFAS in dust. In addition to analyzing targeted PFAS with available commercial standards, we measured extractable organic fluorine (EOF) as a novel proxy that includes both known and unknown types of PFAS. We measured at least 15 targeted PFAS (n = 24), EOF (n = 24), and total fluorine (TF; n = 14) in dust collected from university common spaces and classrooms, half of which had "healthier" furniture and carpet. We observed lower PFAS contamination in buildings with "healthier" materials: "healthier" rooms had a 66% lower median summed PFAS and a 49% lower Kaplan-Meier estimated mean EOF level in dust in comparison to conventional rooms. The summed targeted PFAS were significantly correlated with EOF but accounted for up to only 9% of EOF, indicating the likely presence of unidentified PFAS. EOF levels explained less than 1% of TF in dust. We emphasize the need to use chemical class-based methods (e.g., EOF) for evaluating class-based solutions and to expand non-PFAS solutions for other building materials.


Assuntos
Poeira , Fluorocarbonos , Humanos , Flúor , Fluorocarbonos/análise , Materiais de Construção , Compostos Orgânicos , Fluoretos
10.
Environ Sci Technol ; 56(22): 15573-15583, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36280234

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Bioacumulação , Teorema de Bayes , Poluentes Químicos da Água/análise , Peixes/metabolismo , Água Doce , Água/metabolismo , Sulfonamidas/metabolismo
11.
Respir Res ; 22(1): 73, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637076

RESUMO

BACKGROUND: The mechanism for spread of SARS-CoV-2 has been attributed to large particles produced by coughing and sneezing. There is controversy whether smaller airborne particles may transport SARS-CoV-2. Smaller particles, particularly fine particulate matter (≤ 2.5 µm in diameter), can remain airborne for longer periods than larger particles and after inhalation will penetrate deeply into the lungs. Little is known about the size distribution and location of airborne SARS-CoV-2 RNA. METHODS: As a measure of hospital-related exposure, air samples of three particle sizes (> 10.0 µm, 10.0-2.5 µm, and ≤ 2.5 µm) were collected in a Boston, Massachusetts (USA) hospital from April to May 2020 (N = 90 size-fractionated samples). Locations included outside negative-pressure COVID-19 wards, a hospital ward not directly involved in COVID-19 patient care, and the emergency department. RESULTS: SARS-CoV-2 RNA was present in 9% of samples and in all size fractions at concentrations of 5 to 51 copies m-3. Locations outside COVID-19 wards had the fewest positive samples. A non-COVID-19 ward had the highest number of positive samples, likely reflecting staff congregation. The probability of a positive sample was positively associated (r = 0.95, p < 0.01) with the number of COVID-19 patients in the hospital. The number of COVID-19 patients in the hospital was positively associated (r = 0.99, p < 0.01) with the number of new daily cases in Massachusetts. CONCLUSIONS: More frequent detection of positive samples in non-COVID-19 than COVID-19 hospital areas indicates effectiveness of COVID-ward hospital controls in controlling air concentrations and suggests the potential for disease spread in areas without the strictest precautions. The positive associations regarding the probability of a positive sample, COVID-19 cases in the hospital, and cases in Massachusetts suggests that hospital air sample positivity was related to community burden. SARS-CoV-2 RNA with fine particulate matter supports the possibility of airborne transmission over distances greater than six feet. The findings support guidelines that limit exposure to airborne particles including fine particles capable of longer distance transport and greater lung penetration.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Hospitais de Veteranos/tendências , Tamanho da Partícula , SARS-CoV-2/isolamento & purificação , Boston/epidemiologia , COVID-19/diagnóstico , Serviço Hospitalar de Emergência/tendências , Humanos , Unidades de Terapia Intensiva/tendências
12.
Environ Sci Technol ; 55(14): 9498-9507, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33147956

RESUMO

Oceans have remained the least well-researched reservoirs of persistent organic pollutants (POPs) globally, due to their vast scale, difficulty of access, and challenging (trace) analysis. Little data on POPs exists along South America and the effect of different currents and river plumes on aqueous concentrations. Research cruise KN210-04 (R/V Knorr) offered a unique opportunity to determine POP gradients in air, water, and their air-water exchange along South America, covering both hemispheres. Compounds of interest included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenylethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs). Remote tropical Atlantic Ocean atmospheric concentrations varied little between both hemispheres; for HCB, BDEs 47 and 99, they were ∼5 pg/m3, PCBs were ∼1 pg/m3, α-HCH was ∼0.2 pg/m3, and phenanthrene and other PAHs were in the low 100s pg/m3. Aqueous concentrations were dominated by PCB 52 (mean 4.1 pg/L), HCB (1.6 pg/L), and ß-HCH (1.9 pg/L), with other compounds <1 pg/L. Target PCBs tended to undergo net volatilization from the surface ocean, while gradients indicated net deposition for a-HCH. In contrast to atmospheric concentrations, which were basically unchanged between hemispheres, we detected strong gradients in aqueous POPs, with mostly nondetects in the tropical western South Atlantic. These results highlight the importance of currents and loss processes on ocean scales for the distribution of POPs.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Atmosféricos/análise , Oceano Atlântico , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Oceanos e Mares , Praguicidas/análise , Bifenilos Policlorados/análise , Água
13.
Environ Sci Technol ; 55(19): 13113-13121, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34529917

RESUMO

Chronic exposure to inorganic pollutants adversely affects human health. Inductively coupled plasma mass spectrometry (ICP-MS) is the most common method used for trace metal(loid) analysis of human biomarkers. However, it leads to sample destruction, generation of secondary waste, and significant recurring costs. Portable X-ray fluorescence (XRF) instruments can rapidly and nondestructively determine low concentrations of metal(loid)s. In this work, we evaluated the applicability of portable XRF as a rapid method for analyzing trace metal(loid)s in toenail samples from three populations (n = 97) near the city of Chennai, India. A Passing-Bablok regression analysis of results from both methods revealed that there was no proportional bias among the two methods for nickel (measurement range ∼25 to 420 mg/kg), zinc (10 to 890 mg/kg), and lead (0.29 to 4.47 mg/kg). There was a small absolute bias between the two methods. There was a strong proportional bias (slope = 0.253, 95% CI: 0.027, 0.614) between the two methods for arsenic (below detection to 3.8 mg/kg) and for selenium when the concentrations were lower than 2 mg/kg. Limits of agreement between the two methods using Bland-Altman analysis were derived for nickel, zinc, and lead. Overall, a suitably calibrated and evaluated portable XRF shows promise in making high-throughput assessments at population scales.


Assuntos
Chumbo , Unhas , Humanos , Índia , Espectrometria por Raios X , Raios X , Zinco
14.
Environ Sci Technol ; 55(3): 1487-1496, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33474936

RESUMO

Diverse airborne microbes affect human health and biodiversity, and the Sahara region of West Africa is a globally important source region for atmospheric dust. We collected size-fractionated (>10, 10-2.5, 2.5-1.0, 1.0-0.5, and <0.5 µm) atmospheric particles in Mali, West Africa and conducted the first cultivation-independent study of airborne microbes in this region using 16S rRNA gene sequencing. Abundant and diverse microbes were detected in all particle size fractions at levels higher than those previously hypothesized for desert regions. Average daily abundance was 1.94 × 105 16S rRNA copies/m3. Daily patterns in abundance for particles <0.5 µm differed significantly from other size fractions likely because they form mainly in the atmosphere and have limited surface resuspension. Particles >10 µm contained the greatest fraction of daily abundance (51-62%) and had significantly greater diversity than smaller particles. Greater bacterial abundance of particles >2.5 µm that are bigger than the average bacterium suggests that most airborne bacteria are present as aggregates or attached to particles rather than as free-floating cells. Particles >10 µm have very short atmospheric lifetimes and thus tend to have more localized origins. We confirmed the presence of several potential pathogens using polymerase chain reaction that are candidates for viability and strain testing in future studies. These species were detected on all particle sizes tested, including particles <2.5 µm that are expected to undergo long-range transport. Overall, our results suggest that the composition and sources of airborne microbes can be better discriminated by collecting size-fractionated samples.


Assuntos
Poeira , Microbiota , África do Norte , Microbiologia do Ar , Poeira/análise , Humanos , Mali , Tamanho da Partícula , RNA Ribossômico 16S/genética
15.
Environ Sci Technol ; 55(21): 14445-14456, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724789

RESUMO

We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.


Assuntos
Mercúrio , Aerossóis , Monitoramento Ambiental , Mercúrio/análise , Oceanos e Mares , Oxirredução , Água
16.
Environ Sci Technol ; 55(6): 3686-3695, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667081

RESUMO

Water supplies for millions of U.S. individuals exceed maximum contaminant levels for per- and polyfluoroalkyl substances (PFAS). Contemporary and legacy use of aqueous film forming foams (AFFF) is a major contamination source. However, diverse PFAS sources are present within watersheds, making it difficult to isolate their predominant origins. Here we examine PFAS source signatures among six adjacent coastal watersheds on Cape Cod, MA, U.S.A. using multivariate clustering techniques. A distinct signature of AFFF contamination enriched in precursors with six perfluorinated carbons (C6) was identified in watersheds with an AFFF source, while others were enriched in C4 precursors. Principal component analysis of PFAS composition in impacted watersheds showed a decline in precursor composition relative to AFFF stocks and a corresponding increase in terminal perfluoroalkyl sulfonates with < C6 but not those with ≥ C6. Prior work shows that in AFFF stocks, all extractable organofluorine (EOF) can be explained by targeted PFAS and precursors inferred using Bayesian inference on the total oxidizable precursor assay. Using the same techniques for the first time in impacted watersheds, we find that only 24%-63% of the EOF can be explained by targeted PFAS and oxidizable precursors. Our work thus indicates the presence of large non-AFFF organofluorine sources in these coastal watersheds.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Alcanossulfonatos , Teorema de Bayes , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
17.
Proc Natl Acad Sci U S A ; 115(50): E11586-E11594, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478039

RESUMO

Midlatitude anthropogenic mercury (Hg) emissions and discharge reach the Arctic Ocean (AO) by atmospheric and oceanic transport. Recent studies suggest that Arctic river Hg inputs have been a potentially overlooked source of Hg to the AO. Observations on Hg in Eurasian rivers, which represent 80% of freshwater inputs to the AO, are quasi-inexistent, however, putting firm understanding of the Arctic Hg cycle on hold. Here, we present comprehensive seasonal observations on dissolved Hg (DHg) and particulate Hg (PHg) concentrations and fluxes for two large Eurasian rivers, the Yenisei and the Severnaya Dvina. We find large DHg and PHg fluxes during the spring flood, followed by a second pulse during the fall flood. We observe well-defined water vs. Hg runoff relationships for Eurasian and North American Hg fluxes to the AO and for Canadian Hg fluxes into the larger Hudson Bay area. Extrapolation to pan-Arctic rivers and watersheds gives a total Hg river flux to the AO of 44 ± 4 Mg per year (1σ), in agreement with the recent model-based estimates of 16 to 46 Mg per year and Hg/dissolved organic carbon (DOC) observation-based estimate of 50 Mg per year. The river Hg budget, together with recent observations on tundra Hg uptake and AO Hg dynamics, provide a consistent view of the Arctic Hg cycle in which continental ecosystems traffic anthropogenic Hg emissions to the AO via rivers, and the AO exports Hg to the atmosphere, to the Atlantic Ocean, and to AO marine sediments.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Ásia , Oceano Atlântico , Monitoramento Ambiental , Europa (Continente) , Inundações , Humanos , Modelos Teóricos , Rios/química , Estações do Ano
18.
Small ; 16(21): e1907640, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196921

RESUMO

In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.


Assuntos
Digestão , Grafite , Mucosa Intestinal , Grafite/síntese química , Grafite/isolamento & purificação , Grafite/toxicidade , Humanos , Técnicas In Vitro , Mucosa Intestinal/efeitos dos fármacos , Tamanho da Partícula , Espectroscopia Fotoeletrônica
19.
Environ Sci Technol ; 54(16): 9958-9967, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806910

RESUMO

The spatial distribution of 29 per- and polyfluoroalkyl substances (PFASs) in seawater was investigated along a sampling transect from Europe to the Arctic and two transects within Fram Strait, located between Greenland and Svalbard, in the summer of 2018. Hexafluoropropylene oxide-dimer acid (HFPO-DA), a replacement compound for perfluorooctanoic acid (PFOA), was detected in Arctic seawater for the first time. This provides evidence for its long-range transport to remote areas. The total PFAS concentration was significantly enriched in the cold, low-salinity surface water exiting the Arctic compared to warmer, higher-salinity water from the North Atlantic entering the Arctic (260 ± 20 pg/L versus 190 ± 10 pg/L). The higher ratio of perfluoroheptanoic acid (PFHpA) to perfluorononanoic acid (PFNA) in outflowing water from the Arctic suggests a higher contribution of atmospheric sources compared to ocean circulation. An east-west cross section of the Fram Strait, which included seven depth profiles, revealed higher PFAS concentrations in the surface water layer than in intermediate waters and a negligible intrusion into deep waters (>1000 m). Mass transport estimates indicated a net inflow of PFASs with ≥8 perfluorinated carbons via the boundary currents and a net outflow of shorter-chain homologues. We hypothesize that this reflects higher contributions from atmospheric sources to the Arctic outflow and a higher retention of the long-chain compounds in melting snow and ice.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Europa (Continente) , Fluorocarbonos/análise , Groenlândia , Oceanos e Mares , Óxidos , Água do Mar , Svalbard , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 54(12): 7398-7408, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32422038

RESUMO

Over a third of the world's annual chemical production and sales occur in China. Thus, knowledge of the properties of the substances produced and emitted there is important from a global perspective. The chemical Inventory of Existing Chemical Substances of China (IECSC) lists over 45 000 chemicals. When compared to the North American and European chemical inventories, 6916 substances were found to be unique to the IECSC. We retrieved structural information for 14 938 organic chemicals in the IECSC and determined their overall environmental persistence , bioaccumulation factor (BAF), and long-range transport potential (transfer efficiency) using in silico approaches with the goal of identifying new chemicals with properties that might lead to global contamination issues. Overall, 10% of the 14 938 chemicals were unique to the IECSC and their environmental persistence and BAF were statistically higher than the values for the rest of the IECSC chemicals. We prioritized 27 neutral organic compounds predicted to have prolonged environmental persistence, and high potential for bioaccumulation and long-range transport when compared with polychlorinated biphenyls as a benchmark. We also identified 69 organofluorine compounds with three or more perfluorinated moieties, unique to the IECSC. Screening approaches and results from this study help to identify and prioritize those to be considered in further environmental modeling and monitoring assessments.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , China , Monitoramento Ambiental , Poluentes Ambientais/análise , Indústrias , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA