Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 81(9): 1970-1987.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33725485

RESUMO

Depletion of architectural factors globally alters chromatin structure but only modestly affects gene expression. We revisit the structure-function relationship using the inactive X chromosome (Xi) as a model. We investigate cohesin imbalances by forcing its depletion or retention using degron-tagged RAD21 (cohesin subunit) or WAPL (cohesin release factor). Cohesin loss disrupts the Xi superstructure, unveiling superloops between escapee genes with minimal effect on gene repression. By contrast, forced cohesin retention markedly affects Xi superstructure, compromises spreading of Xist RNA-Polycomb complexes, and attenuates Xi silencing. Effects are greatest at distal chromosomal ends, where looping contacts with the Xist locus are weakened. Surprisingly, cohesin loss creates an Xi superloop, and cohesin retention creates Xi megadomains on the active X chromosome. Across the genome, a proper cohesin balance protects against aberrant inter-chromosomal interactions and tempers Polycomb-mediated repression. We conclude that a balance of cohesin eviction and retention regulates X inactivation and inter-chromosomal interactions across the genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Cromossomo X , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Camundongos , Conformação de Ácido Nucleico , Proteínas do Grupo Polycomb/genética , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , Relação Estrutura-Atividade , Coesinas
2.
Mol Cell ; 74(1): 101-117.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827740

RESUMO

During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/Polycomb spreading, silencing, and changes in chromosome architecture.


Assuntos
Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Linhagem Celular Transformada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Masculino , Camundongos , Motivos de Nucleotídeos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Cromossomo X/metabolismo
3.
Mol Cell ; 65(3): 432-446.e5, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157505

RESUMO

Master regulatory genes require stable silencing by the polycomb group (PcG) to prevent misexpression during differentiation and development. Some PcG proteins covalently modify histones, which contributes to heritable repression. The role for other effects on chromatin structure is less understood. We characterized the organization of PcG target genes in ESCs and neural progenitors using 5C and super-resolution microscopy. The genomic loci of repressed PcG targets formed discrete, small (20-140 Kb) domains of tight interaction that corresponded to locations bound by canonical polycomb repressive complex 1 (PRC1). These domains changed during differentiation as PRC1 binding changed. Their formation depended upon the Polyhomeotic component of canonical PRC1 and occurred independently of PRC1-catalyzed ubiquitylation. PRC1 domains differ from topologically associating domains in size and boundary characteristics. These domains have the potential to play a key role in transmitting epigenetic silencing of PcG targets by linking PRC1 to formation of a repressive higher-order structure.


Assuntos
DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Complexo Repressor Polycomb 1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 1/química , Domínios Proteicos , Ubiquitinação
4.
Genes Dev ; 30(15): 1747-60, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542829

RESUMO

X-chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X chromosome in the female. Knockout studies have established a requirement for Xist with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14-fold to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Desenvolvimento Embrionário/genética , RNA Longo não Codificante/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Miocárdio/patologia , Deleção de Sequência , Baço/patologia , Análise de Sobrevida , Cromossomo X/genética , Inativação do Cromossomo X/genética
5.
Mol Cell ; 55(5): 791-802, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25155612

RESUMO

Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.


Assuntos
Cromatina/metabolismo , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Humanos , Modelos Genéticos , Hibridização de Ácido Nucleico , RNA Longo não Codificante/análise , RNA Longo não Codificante/química , Transcrição Gênica
6.
J Biol Chem ; 295(17): 5761-5770, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152223

RESUMO

Over the last several years it has become clear that higher order assemblies on membranes, exemplified by signalosomes, are a paradigm for the regulation of many membrane signaling processes. We have recently combined two-color direct stochastic optical reconstruction microscopy (dSTORM) with the (Clus-DoC) algorithm that combines cluster detection and colocalization analysis to observe the organization of 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) into higher order assemblies on the nuclear envelope of mast cells; these assemblies were linked to leukotriene (LT) C4 production. In this study we investigated whether higher order assemblies of 5-LO and FLAP included cytosolic phospholipase A2 (cPLA2) and were linked to LTB4 production in murine neutrophils. Using two- and three-color dSTORM supported by fluorescence lifetime imaging microscopy we identified higher order assemblies containing 40 molecules (median) (IQR: 23, 87) of 5-LO, and 53 molecules (62, 156) of FLAP monomer. 98 (18, 154) molecules of cPLA2 were clustered with 5-LO, and 77 (33, 114) molecules of cPLA2 were associated with FLAP. These assemblies were tightly linked to LTB4 formation. The activation-dependent close associations of cPLA2, FLAP, and 5-LO in higher order assemblies on the nuclear envelope support a model in which arachidonic acid is generated by cPLA2 in apposition to FLAP, facilitating its transfer to 5-LO to initiate LT synthesis.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Leucotrieno C4/metabolismo , Neutrófilos/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/análise , Algoritmos , Animais , Araquidonato 5-Lipoxigenase/análise , Núcleo Celular/metabolismo , Células Cultivadas , Leucotrieno C4/análise , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Neutrófilos/citologia , Imagem Óptica/métodos
8.
Nucleic Acids Res ; 47(8): 3875-3887, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30783652

RESUMO

The XIST RNA is a non-coding RNA that induces X chromosome inactivation (XCI). Unlike the mouse Xist RNA, how the human XIST RNA controls XCI in female cells is less well characterized, and its functional motifs remain unclear. To systematically decipher the XCI-involving elements of XIST RNA, 11 smaller XIST segments, including repeats A, D and E; human-specific repeat elements; the promoter; and non-repetitive exons, as well as the entire XIST gene, were homozygously deleted in K562 cells using the Cas9 nuclease and paired guide RNAs at high efficiencies, followed by high-throughput RNA sequencing and RNA fluorescence in situ hybridization experiments. Clones containing en bloc and promoter deletions that consistently displayed no XIST RNAs and a global up-regulation of X-linked genes confirmed that the deletion of XIST reactivates the inactive X chromosome. Systematic analyses of segmental deletions delineated that exon 5 harboring the non-repeat element is important for X-inactivation maintenance, whereas exons 2, 3 and 4 as well as the other repeats in exon 1 are less important, a different situation from that of mouse Xist. This Cas9-assisted dissection of XIST allowed us to understand the unique functional domains within the human XIST RNA.


Assuntos
Sequência de Bases , Cromossomos Humanos X/química , RNA Longo não Codificante/genética , Deleção de Sequência , Inativação do Cromossomo X , Processamento Alternativo , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Cromossomos Humanos X/metabolismo , Células Clonais , Éxons , Edição de Genes/métodos , Genoma Humano , Humanos , Células K562 , Camundongos , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Longo não Codificante/metabolismo , Especificidade da Espécie , Sequenciamento Completo do Genoma
9.
Proc Natl Acad Sci U S A ; 114(40): 10654-10659, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923964

RESUMO

X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.


Assuntos
Cromossomos de Mamíferos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares , RNA Longo não Codificante , Sequências Repetitivas de Ácido Nucleico , Cromossomo X , Animais , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(31): E4216-25, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195790

RESUMO

X-chromosome inactivation (XCI) is initiated by the long noncoding RNA Xist, which coats the inactive X (Xi) and targets Polycomb repressive complex 2 (PRC2) in cis. Epigenomic analyses have provided significant insight into Xist binding patterns and chromatin organization of the Xi. However, such epigenomic analyses are limited by averaging of population-wide dynamics and do not inform behavior of single cells. Here we view Xist RNA and the Xi at 20-nm resolution using STochastic Optical Reconstruction Microscopy (STORM) in mouse cells. We observe dynamics at the single-cell level not predicted by epigenomic analysis. Only ∼50 hubs of Xist RNA occur on the Xi in the maintenance phase, corresponding to 50-100 Xist molecules per Xi and contrasting with the chromosome-wide "coat" observed by deep sequencing and conventional microscopy. Likewise, only ∼50 hubs PRC2 are observed. PRC2 and Xist foci are not randomly distributed but showed statistically significant spatial association. Knock-off experiments enable visualization of the dynamics of dissociation and relocalization onto the Xi and support a functional tethering of Xist and PRC2. Our analysis reveals that Xist-PRC2 complexes are less numerous than expected and suggests methylation of nucleosomes in a hit-and-run model.


Assuntos
Fibroblastos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epitopos/metabolismo , Feminino , Histonas/metabolismo , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Lisina/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2/química , RNA Longo não Codificante/química , Cromossomo X/metabolismo , Inativação do Cromossomo X
11.
Proc Natl Acad Sci U S A ; 112(47): 14415-22, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26489649

RESUMO

The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line.


Assuntos
Impressão Genômica , Células Germinativas/metabolismo , RNA Longo não Codificante/genética , Animais , Blastocisto/metabolismo , Epigênese Genética , Feminino , Hemizigoto , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos Transgênicos , Fenótipo , RNA Longo não Codificante/síntese química , RNA Longo não Codificante/metabolismo , Transgenes
12.
Genes Dev ; 23(13): 1494-504, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571179

RESUMO

Most of the eukaryotic genome is transcribed, yielding a complex network of transcripts that includes tens of thousands of long noncoding RNAs with little or no protein-coding capacity. Although the vast majority of long noncoding RNAs have yet to be characterized thoroughly, many of these transcripts are unlikely to represent transcriptional "noise" as a significant number have been shown to exhibit cell type-specific expression, localization to subcellular compartments, and association with human diseases. Here, we highlight recent efforts that have identified a myriad of molecular functions for long noncoding RNAs. In some cases, it appears that simply the act of noncoding RNA transcription is sufficient to positively or negatively affect the expression of nearby genes. However, in many cases, the long noncoding RNAs themselves serve key regulatory roles that were assumed previously to be reserved for proteins, such as regulating the activity or localization of proteins and serving as organizational frameworks of subcellular structures. In addition, many long noncoding RNAs are processed to yield small RNAs or, conversely, modulate how other RNAs are processed. It is thus becoming increasingly clear that long noncoding RNAs can function via numerous paradigms and are key regulatory molecules in the cell.


Assuntos
Regulação da Expressão Gênica , RNA não Traduzido/metabolismo , Animais , Fases de Leitura Aberta , Ligação Proteica , Precursores de RNA , Processamento Pós-Transcricional do RNA , RNA não Traduzido/química
13.
Dev Cell ; 54(1): 21-32.e5, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531209

RESUMO

X chromosome inactivation (XCI) is a global silencing mechanism by which XX and XY mammals equalize X-linked gene dosages. XCI begins with an establishment phase during which Xist RNA spreads and induces de novo heterochromatinization across a female X chromosome and is followed by a maintenance phase when multiple epigenetic pathways lock down the inactive X (Xi) state. Involvement of Polycomb repressive complexes 1 and 2 in XCI has been intensively studied but with conflicting conclusions regarding their recruitment and role in Xi silencing. Here, we reveal that establishment of XCI has two phases and reconcile the roles that Xist repeats A and B play in gene silencing and Polycomb recruitment. Repeat A initiates both processes, whereas repeat B bolsters or stabilizes them thereafter. Once established, XCI no longer requires repeat A during maintenance. These findings integrate disparate studies and present a unified view of Xist's role in Polycomb-mediated silencing.


Assuntos
Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Animais , Células Cultivadas , Camundongos , Proteínas do Grupo Polycomb/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Cromossomo X/genética
14.
Nat Commun ; 10(1): 2950, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270318

RESUMO

X-chromosome inactivation triggers fusion of A/B compartments to inactive X (Xi)-specific structures known as S1 and S2 compartments. SMCHD1 then merges S1/S2s to form the Xi super-structure. Here, we ask how S1/S2 compartments form and reveal that Xist RNA drives their formation via recruitment of Polycomb repressive complex 1 (PRC1). Ablating Smchd1 in post-XCI cells unveils S1/S2 structures. Loss of SMCHD1 leads to trapping Xist in the S1 compartment, impairing RNA spreading into S2. On the other hand, depleting Xist, PRC1, or HNRNPK precludes re-emergence of S1/S2 structures, and loss of S1/S2 compartments paradoxically strengthens the partition between Xi megadomains. Finally, Xi-reactivation in post-XCI cells can be enhanced by depleting both SMCHD1 and DNA methylation. We conclude that Xist, PRC1, and SMCHD1 collaborate in an obligatory, sequential manner to partition, fuse, and direct self-association of Xi compartments required for proper spreading of Xist RNA.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/genética , Complexo Repressor Polycomb 1/metabolismo , RNA Longo não Codificante/metabolismo , Cromossomo X/química , Cromossomo X/genética , Animais , Metilação de DNA/genética , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Modelos Genéticos , Inativação do Cromossomo X/genética
15.
Nat Commun ; 10(1): 5137, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723143

RESUMO

RNA has been classically known to play central roles in biology, including maintaining telomeres, protein synthesis, and in sex chromosome compensation. While thousands of long noncoding RNAs (lncRNAs) have been identified, attributing RNA-based roles to lncRNA loci requires assessing whether phenotype(s) could be due to DNA regulatory elements, transcription, or the lncRNA. Here, we use the conserved X chromosome lncRNA locus Firre, as a model to discriminate between DNA- and RNA-mediated effects in vivo. We demonstrate that (i) Firre mutant mice have cell-specific hematopoietic phenotypes, and (ii) upon exposure to lipopolysaccharide, mice overexpressing Firre exhibit increased levels of pro-inflammatory cytokines and impaired survival. (iii) Deletion of Firre does not result in changes in local gene expression, but rather in changes on autosomes that can be rescued by expression of transgenic Firre RNA. Together, our results provide genetic evidence that the Firre locus produces a trans-acting lncRNA that has physiological roles in hematopoiesis.


Assuntos
Loci Gênicos , Hematopoese/genética , RNA Longo não Codificante/genética , Animais , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos Knockout , Especificidade de Órgãos/genética , Fenótipo , RNA Longo não Codificante/metabolismo
17.
Science ; 349(6245)2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26089354

RESUMO

The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Cromossomo X/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Camundongos , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Proteômica , RNA Helicases/metabolismo , Cromossomo X/química , Cromossomo X/genética , Coesinas
18.
Nat Cell Biol ; 13(1): 95-101, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170033

RESUMO

The cell nucleus is a highly compartmentalized organelle harbouring a variety of dynamic membraneless nuclear bodies. How these subnuclear domains are established and maintained is not well understood. Here, we investigate the molecular mechanism of how one nuclear body, the paraspeckle, is assembled and organized. Paraspeckles are discrete ribonucleoprotein bodies found in mammalian cells and implicated in nuclear retention of hyperedited mRNAs. We developed a live-cell imaging system that allows for the inducible transcription of Men ɛ/ß (also known as Neat1; ref. 12) noncoding RNAs (ncRNAs) and the direct visualization of the recruitment of paraspeckle proteins. Using this system, we demonstrate that Men ɛ/ß ncRNAs are essential to initiate the de novo assembly of paraspeckles. These newly formed structures effectively harbour nuclear-retained mRNAs confirming that they are bona fide functional paraspeckles. By three independent approaches, we show that it is the act of Men ɛ/ß transcription, but not ncRNAs alone, that regulates paraspeckle maintenance. Finally, fluorescence recovery after photobleaching (FRAP) analyses supported a critical structural role for Men ɛ/ß ncRNAs in paraspeckle organization. This study establishes a model in which Men ɛ/ß ncRNAs serve as a platform to recruit proteins to assemble paraspeckles.


Assuntos
Núcleo Celular/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , RNA não Traduzido/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Humanos , Hibridização in Situ Fluorescente/métodos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Genome Res ; 19(3): 347-59, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19106332

RESUMO

Studies of the transcriptional output of the human and mouse genomes have revealed that there are many more transcripts produced than can be accounted for by predicted protein-coding genes. Using a custom microarray, we have identified 184 non-coding RNAs that exhibit more than twofold up- or down-regulation upon differentiation of C2C12 myoblasts into myotubes. Here, we focus on the Men epsilon/beta locus, which is up-regulated 3.3-fold during differentiation. Two non-coding RNA isoforms are produced from a single RNA polymerase II promoter, differing in the location of their 3' ends. Men epsilon is a 3.2-kb polyadenylated RNA, whereas Men beta is an approximately 20-kb transcript containing a genomically encoded poly(A)-rich tract at its 3'-end. The 3'-end of Men beta is generated by RNase P cleavage. The Men epsilon/beta transcripts are localized to nuclear paraspeckles and directly interact with NONO. Knockdown of MEN epsilon/beta expression results in the disruption of nuclear paraspeckles. Furthermore, the formation of paraspeckles, after release from transcriptional inhibition by DRB treatment, was suppressed in MEN epsilon/beta-depleted cells. Our findings indicate that the MEN epsilon/beta non-coding RNAs are essential structural/organizational components of paraspeckles.


Assuntos
Corpos de Inclusão Intranuclear/metabolismo , Desenvolvimento Muscular/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA não Traduzido/genética , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA não Traduzido/metabolismo , Ribonuclease P/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA