RESUMO
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.
Assuntos
Condrócitos , Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , Fator de Crescimento Transformador beta2 , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Ribossomos/metabolismo , Humanos , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Sítios Internos de Entrada Ribossomal , Linhagem CelularRESUMO
Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.
Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Proteoma/genética , Ribossomos/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genéticaRESUMO
Viperin (also known as radical SAM domain-containing 2 (RSAD2)) is an interferon-inducible and evolutionary conserved protein that participates in the cell's innate immune response against a number of viruses. Viperin mRNA is a substrate for endoribonucleolytic cleavage by RNase mitochondrial RNA processing (MRP) and mutations in the RNase MRP small nucleolar RNA (snoRNA) subunit of the RNase MRP complex cause cartilage-hair hypoplasia (CHH), a human developmental condition characterized by metaphyseal chondrodysplasia and severe dwarfism. It is unknown how CHH-pathogenic mutations in RNase MRP snoRNA interfere with skeletal development, and aberrant processing of RNase MRP substrate RNAs is thought to be involved. We hypothesized that viperin plays a role in chondrogenic differentiation. Using immunohistochemistry, real-time quantitative PCR, immunoblotting, ELISA, siRNA-mediated gene silencing, plasmid-mediated gene overexpression, label-free MS proteomics, and promoter reporter bioluminescence assays, we discovered here that viperin is expressed in differentiating chondrocytic cells and regulates their protein secretion and the outcome of chondrogenic differentiation by influencing transforming growth factor ß (TGF-ß)/SMAD family 2/3 (SMAD2/3) activity via C-X-C motif chemokine ligand 10 (CXCL10). Of note, we observed disturbances in this viperin-CXCL10-TGF-ß/SMAD2/3 axis in CHH chondrocytic cells. Our results indicate that the antiviral protein viperin controls chondrogenic differentiation by influencing secretion of soluble proteins and identify a molecular route that may explain impaired chondrogenic differentiation of cells from individuals with CHH.
Assuntos
Quimiocina CXCL10/metabolismo , Condrogênese , Proteínas/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/análise , Proteínas/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. METHODS: To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. RESULTS: We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1ß than the NP progenitor cells and aspects of this response were controlled by EGR1. CONCLUSIONS: Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells' epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc.
Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Disco Intervertebral/metabolismo , Diferenciação Celular , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-1beta/farmacologia , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Fenótipo , Interferência de RNA , Fatores de Tempo , Transcrição Gênica , TransfecçãoRESUMO
OBJECTIVE: Osteoarthritis (OA) is characterized by articular cartilage erosion, pathological subchondral bone changes, and signs of synovial inflammation and pain. We previously identified p[63-82], a bone morphogenetic protein 7 (BMP7)-derived bioactive peptide that attenuates structural cartilage degeneration in the rat medial meniscal tear-model for posttraumatic OA. This study aimed to evaluate the cartilage erosion-attenuating activity of p[63-82] in a different preclinical model for OA (anterior cruciate ligament transection-partial medial meniscectomy [anterior cruciate ligament transection (ACLT)-pMMx]). The disease-modifying action of the p[63-82] was followed-up in this model for 5 and 10 weeks. DESIGN: Skeletally mature male Lewis rats underwent ACLT-pMMx surgery. Rats received weekly intra-articular injections with either saline or 500 ng p[63-82]. Five and 10 weeks postsurgery, rats were sacrificed, and subchondral bone characteristics were determined using microcomputed tomography (µCT). Histopathological evaluation of cartilage degradation and Osteoarthritis Research Society International (OARSI)-scoring was performed following Safranin-O/Fast Green staining. Pain-related behavior was measured by incapacitance testing and footprint analysis. RESULTS: Histopathological evaluation at 5 and 10 weeks postsurgery showed reduced cartilage degeneration and a significantly reduced OARSI score, whereas no significant changes in subchondral bone characteristics were found in the p[63-82]-treated rats compared to the saline-treated rats. ACLT-pMMx-induced imbalance of static weightbearing capacity in the p[63-82] group was significantly improved compared to the saline-treated rats at weeks 5 postsurgery. Footprint analysis scores in the p[63-82]-treated rats demonstrated improvement at week 10 postsurgery. CONCLUSIONS: Weekly intra-articular injections of p[63-82] in the rat ACLT-pMMx posttraumatic OA model resulted in reduced degenerative cartilage changes and induced functional improvement in static weightbearing capacity during follow-up.
RESUMO
BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype.
Assuntos
Proteína Morfogenética Óssea 7/fisiologia , Condrócitos/metabolismo , Proteínas de Homeodomínio/fisiologia , Biossíntese de Proteínas/genética , RNA Ribossômico/metabolismo , Fatores de Transcrição/fisiologia , Proteína Morfogenética Óssea 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFß-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Assuntos
Proteína Morfogenética Óssea 7/genética , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Fibrocartilagem/metabolismo , Biomarcadores , Proteína Morfogenética Óssea 7/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Suscetibilidade a Doenças , Ativação Enzimática , Fibrocartilagem/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Metaloproteinase 2 da Matriz/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Fenótipo , Transdução de SinaisRESUMO
Treatment of osteoarthritis (OA) is mainly symptomatic by alleviating pain to postpone total joint replacement. Bone morphogenetic protein 7 (BMP7) is a candidate morphogen for experimental OA treatment that favorably alters the chondrocyte and cartilage phenotype. Intra-articular delivery and sustained release of a recombinant growth factor for treating OA are challenging, whereas the use of peptide technology potentially circumvents many of these challenges. In this study, we screened a high-resolution BMP7 peptide library and discovered several overlapping peptide sequences from two regions in BMP7 with nanomolar bioactivity that attenuated the pathological OA chondrocyte phenotype. A single exposure of OA chondrocytes to peptides p[63-82] and p[113-132] ameliorated the OA chondrocyte phenotype for up to 8 days, and peptides were bioactive on chondrocytes in OA synovial fluid. Peptides p[63-82] and p[113-132] required NKX3-2 for their bioactivity on chondrocytes and provoke changes in SMAD signaling activity. The bioactivity of p[63-82] depended on specific evolutionary conserved sequence elements common to BMP family members. Intra-articular injection of a rat medial meniscal tear (MMT) model with peptide p[63-82] attenuated cartilage degeneration. Together, this study identified two regions in BMP7 from which bioactive peptides are able to attenuate the OA chondrocyte phenotype. These BMP7-derived peptides provide potential novel disease-modifying treatment options for OA.
RESUMO
Mutations in the non-coding snoRNA component of mitochondrial RNA processing endoribonuclease (RMRP) are the cause of cartilage-hair hypoplasia (CHH). CHH is a rare form of metaphyseal chondrodysplasia characterized by disproportionate short stature and abnormal growth plate development. The process of chondrogenic differentiation within growth plates of long bones is vital for longitudinal bone growth. However, molecular mechanisms behind impaired skeletal development in CHH patients remain unclear. We employed a transdifferentiation model (FDC) combined with whole transcriptome analysis to investigate the chondrogenic transdifferentiation capacity of CHH fibroblasts and to examine pathway regulation in CHH cells during chondrogenic differentiation. We established that the FDC transdifferentiation model is a relevant in vitro model of chondrogenic differentiation, with an emphasis on the terminal differentiation phase, which is crucial for longitudinal bone growth. We demonstrated that CHH fibroblasts are capable of transdifferentiating into chondrocyte-like cells, and show a reduced commitment to terminal differentiation. We also found a number of key factors of BMP, FGF, and IGF-1 signalling axes to be significantly upregulated in CHH cells during the chondrogenic transdifferentiation. Our results support postulated conclusions that RMRP has pleiotropic functions and profoundly affects multiple aspects of cell fate and signalling. Our findings shed light on the consequences of pathological CHH mutations in snoRNA RMRP during chondrogenic differentiation and the relevance and roles of non-coding RNAs in genetic diseases in general.
RESUMO
The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by hypertrophic differentiation of the engineered cartilaginous tissue caused by endochondral ossification. Since a healthy cartilage matrix contains high amounts of Aggrecan and COMP, we hypothesized that their supplementation in the biogel used in the generation of subperiosteal cartilage mimics the composition of the cartilage extracellular matrix environment, with beneficial properties for the engineered cartilage. Supplementation of COMP or Aggrecan was studied in vitro during chondrogenic differentiation of rabbit periosteum cells and periosteum-derived chondrocytes. Low melting agarose was supplemented with bovine Aggrecan, human recombinant COMP or vehicle and was injected between the bone and periosteum at the upper medial side of the tibia of New Zealand white rabbits. Generated subperiosteal cartilage tissue was analyzed for weight, GAG and DNA content and ALP activity. Key markers of different phases of endochondral ossification were measured by RT-qPCR. For the in vitro experiments, no significant differences in chondrogenic marker expression were detected following COMP or Aggrecan supplementation, while in vivo favorable chondrogenic marker expression was detected. Gene expression levels of hypertrophic markers as well as ALP activity were significantly decreased in the Aggrecan and COMP supplemented conditions compared to controls. The wet weight and GAG content of the in vivo generated subperiosteal cartilage tissue was not significantly different between groups. Data demonstrate the potential of Aggrecan and COMP to favorably influence the subperiosteal microenvironment for the in vivo generation of cartilage for the optimization of cartilage regenerative approaches.
RESUMO
Although pathways controlling ribosome activity have been described to regulate chondrocyte homeostasis in osteoarthritis, ribosome biogenesis in osteoarthritis is unexplored. We hypothesized that U3 snoRNA, a non-coding RNA involved in ribosomal RNA maturation, is critical for chondrocyte protein translation capacity in osteoarthritis. U3 snoRNA was one of a number of snoRNAs with decreased expression in osteoarthritic cartilage and osteoarthritic chondrocytes. OA synovial fluid impacted U3 snoRNA expression by affecting U3 snoRNA gene promoter activity, while BMP7 was able to increase its expression. Altering U3 snoRNA expression resulted in changes in chondrocyte phenotype. Interference with U3 snoRNA expression led to reduction of rRNA levels and translational capacity, whilst induced expression of U3 snoRNA was accompanied by increased 18S and 28S rRNA levels and elevated protein translation. Whole proteome analysis revealed a global impact of reduced U3 snoRNA expression on protein translational processes and inflammatory pathways. For the first time we demonstrate implications of a snoRNA in osteoarthritis chondrocyte biology and investigated its role in the chondrocyte differentiation status, rRNA levels and protein translational capacity.
Assuntos
Condrócitos/metabolismo , Osteoartrite/metabolismo , RNA Nucleolar Pequeno/genética , Adulto , Idoso , Animais , Sequência de Bases , Nucléolo Celular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Osteoartrite/genética , Cultura Primária de Células , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/metabolismoRESUMO
Numerous growth and transcription factors have been implicated in endochondral bone formation of the growth plate. Many of these factors are up-regulated during hypoxia and downstream of Hypoxia-Inducible Factor (HIF)-1alpha activation. However, the specific function of these factors, in the context of oxygenation and metabolic adaptation during adult periosteal endochondral bone formation, is largely unknown. Here, we studied HIF-1alpha and the possible roles of (HIF-1alpha related) growth and transcription factors in a recently developed in vivo model for adult periosteal endochondral bone formation. At different phases of periosteal endochondral bone formation, mRNA levels of Transforming Growth Factor (TGF)-beta1, Bone Morphogenetic Proteins (BMP)-2, -4, and -7, Indian Hedgehog (Ihh), Parathyroid Hormone-related Protein (PTHrP), Sox9, Runx2, HIF-1alpha, Vascular Endothelial Growth Factor (VEGF), periostin (POSTN), and Glyceraldehyde-3-Phophate Dehydrogenase (GAPDH) were evaluated with RT-real time-PCR. Also protein levels of TGF-beta1, BMP-2, -4, and -7, HIF-1alpha, and POSTN were examined. During the chondrogenic phase, the expression of Sox9, Ihh, and HIF-1alpha was significantly up-regulated. TGF-beta1 mRNA levels were rather constant, and the mRNA levels of BMPs were significantly lower. Immunohistochemical detection of corresponding gene products, however, revealed the presence of the proteins of TGF-beta1, BMP-2, -4, and -7, HIF-1alpha, and POSTN within the chondrocytes during chondrogenesis. This discrepancy in gene expression between mRNA and protein level for TGF-beta1 and the different BMPs is indicative of post-transcriptional regulation of protein synthesis. HIF-1alpha activation and up-regulation of GAPDH support a hypoxia-induced metabolic shift during periosteal chondrogenesis. Our model recapitulates essential steps in osteochondrogenesis and provides a new experimental system to study and ultimately control tissue regeneration in the adult organism.
Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese , Animais , Proteínas Morfogenéticas Ósseas/genética , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Condrogênese , Feminino , Periósteo/citologia , Periósteo/fisiologia , RNA Mensageiro/metabolismo , CoelhosRESUMO
Heterotopic ossification (HO) is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. Heterotopic ossifications are described to develop via endochondral ossification and standard treatment is administration of indomethacin. It is currently unknown how indomethacin influences heterotopic ossification on a molecular level; therefore, we aimed to determine whether indomethacin might influence heterotopic ossification via impairing the chondrogenic phase of endochondral ossification. Progenitor cell models differentiating in the chondrogenic lineage (ATDC5, primary human bone marrow stem cells and ex vivo periosteal agarose cultures) were treated with increasing concentrations of indomethacin and a decrease in gene- and protein expression of chondrogenic and hypertrophic markers (measured by RT-qPCR and immunoblotting) as well as decreased glycosamino-glycan content (by alcian blue histochemistry) was observed. Even when hypertrophic differentiation was provoked, the addition of indomethacin resulted in decreased hypertrophic marker expression. Interestingly, when mature chondrocytes were treated with indomethacin, a clear increase in collagen type 2 expression was observed. Similarly, when ATDC5 cells and bone marrow stem cells were pre-differentiated to obtain a chondrocyte phenotype and indomethacin was added from this time point onward, low concentrations of indomethacin also resulted in increased chondrogenic differentiation. Indomethacin induces differential effects on in vitro endochondral ossification, depending on the chondrocyte's differentiation stage, with complete inhibition of chondrogenic differentiation as the most pronounced action. This observation may provide a rational behind the elusive mode of action of indomethacin in the treatment of heterotopic ossifications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:847-857, 2017.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Condrócitos/citologia , Indometacina/farmacologia , Fosfatase Alcalina/química , Artroplastia de Quadril , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Condrogênese/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dinoprostona/metabolismo , Glicosaminoglicanos/química , Humanos , Osteogênese , Periósteo/química , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Transcrição/metabolismoRESUMO
Mutations in the RMRP-gene, encoding the lncRNA component of the RNase MRP complex, are the origin of cartilage-hair hypoplasia. Cartilage-hair hypoplasia is associated with severe dwarfism caused by impaired skeletal development. However, it is not clear why mutations in RMRP RNA lead to skeletal dysplasia. Since chondrogenic differentiation of the growth plate is required for development of long bones, we hypothesized that RMRP RNA plays a pivotal role in chondrogenic differentiation. Expression of Rmrp RNA and RNase MRP protein subunits was detected in the murine growth plate and during the course of chondrogenic differentiation of ATDC5 cultures, where Rmrp RNA expression was found to be correlated with chondrocyte hypertrophy. Genetic interference with Rmrp RNA expression in ATDC5 cultures caused a deregulation of chondrogenic differentiation, with a prominent impact on hypertrophy and changes in pre-rRNA processing and rRNA levels. Promoter reporter studies showed that Rmrp RNA expression responds to chondrogenic morphogens. Chondrogenic trans-differentiation of cartilage-hair hypoplasia fibroblasts was impaired with a pronounced impact on hypertrophic differentiation. Together, our data show that RMRP RNA expression is regulated during different stages of chondrogenic differentiation and indicate that RMRP RNA may play a pivotal role in chondrocyte hypertrophy, with potential consequences for CHH pathobiology.
Assuntos
Diferenciação Celular/genética , Condrócitos/citologia , RNA Longo não Codificante/genética , Animais , Crescimento Celular , Células Cultivadas , Condrócitos/fisiologia , Endorribonucleases/genética , Fibroblastos/citologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/citologia , Cabelo/anormalidades , Cabelo/patologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Camundongos Endogâmicos C57BL , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Doenças da Imunodeficiência Primária , Regiões Promotoras GenéticasRESUMO
Animal studies in cartilage tissue engineering usually include the transfer of cultured cells into chondral or osteochondral defects. Immediately at implantation, the cells are exposed to a dramatically changed environment. The aim of this study was to determine the viability of two cell types currently considered for cellular therapies of cartilage defects-chondrocytes and progenitor cells-shortly after exposure to an osteochondral defect in rabbit knees. To that end, autogenic chondrocytes and periosteal cells were labeled with CM-DiI fluorochrome, seeded or cultured in PEGT/PBT scaffolds for periods up to 2 weeks, transferred into osteochondral defects, harvested 5 days postimplantation, and analyzed for cell viability. In order to further elucidate factors effecting cell viability within our model system, we investigated the effect of serum, 2) extracellular matrix surrounding implanted cells, 3) scaffold interconnectivity, and 4) hyaluronan, as a known cell protectant. Controls included scaffolds with devitalized cells and scaffolds analyzed at implantation. We found that the viability of periosteum cells (14%), but not of chondrocytes (65-95%), was significantly decreased after implantation. The addition of hyaluronan increased periostium cell viability to 44% (p < 0.05). Surprisingly, cell viability in less interconnected compression-molded scaffolds was higher compared to that of fully interconnected scaffolds produced by rapid prototyping. All other factors tested did not affect viability significantly. Our data suggest chondrocytes as a suitable cell source for cartilage repair in line with clinical data on several chondrocyte-based therapies. Although we did not test progenitor cells other the periosteum cells, tissue-engineering approaches using such cell types should take cell viability aspects into consideration.
Assuntos
Osso e Ossos/lesões , Cartilagem/lesões , Sobrevivência Celular/fisiologia , Condrócitos/fisiologia , Células-Tronco/fisiologia , Engenharia Tecidual , Animais , Células Cultivadas , Condrócitos/transplante , Camundongos , Camundongos Nus , Transplante de Células-TroncoRESUMO
OBJECTIVES: NSAIDs are used to relieve pain and decrease inflammation by inhibition of cyclooxygenase (COX)-catalyzed prostaglandin (PG) synthesis. PGs are fatty acid mediators involved in cartilage homeostasis, however the action of their synthesizing COX-enzymes in cartilage differentiation is not well understood. In this study we hypothesized that COX-1 and COX-2 have differential roles in chondrogenic differentiation. METHODS: ATDC5 cells were differentiated in the presence of COX-1 (SC-560, Mofezolac) or COX-2 (NS398, Celecoxib) specific inhibitors. Specificity of the NSAIDs and inhibition of specific prostaglandin levels were determined by EIA. Prostaglandins were added during the differentiation process. Chondrogenic outcome was determined by gene- and protein expression analyses. RESULTS: Inhibition of COX-1 prevented Col2a1 and Col10a1 expression. Inhibition of COX-2 resulted in decreased Col10a1 expression, while Col2a1 remained unaffected. To explain this difference expression patterns of both COX-enzymes as well as specific prostaglandin concentrations were determined. Both COX-enzymes are upregulated during late chondrogenic differentiation, whereas only COX-2 is briefly expressed also early in differentiation. PGD2 and PGE2 followed the COX-2 expression pattern, whereas PGF2α and TXA2 levels remained low. Furthermore, COX inhibition resulted in decreased levels of all tested PGs, except for PGD2 and PGF2α in the COX-1 inhibited condition. Addition of PGE2 and PGF2α resulted in increased expression of chondrogenic markers, whereas TXA2 increased expression of hypertrophic markers. CONCLUSIONS: Our findings point towards a differential role for COX-enzymes and PG-production in chondrogenic differentiation of ATDC5 cells. Ongoing research is focusing on further elucidating the functional partition of cyclooxygenases and specific prostaglandin production.
Assuntos
Cartilagem/química , Diferenciação Celular/fisiologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Prostaglandinas/fisiologia , Células-Tronco/citologia , Animais , Linhagem Celular , CamundongosRESUMO
INTRODUCTION: Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. METHODS: Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor ß (TGFß). RESULTS: The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFß induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. CONCLUSION: We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Assuntos
Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Proteínas ADAM/metabolismo , Proteínas ADAMTS , Adolescente , Biomarcadores/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Linhagem Celular Transformada/efeitos dos fármacos , Linhagem Celular Transformada/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta3/farmacologiaRESUMO
Periosteum has chondrogenic and osteogenic potential and plays an important role in fracture healing. The purpose of this study was to evaluate the reactive tissue formed after damaging the periosteum. Damaging the periosteum may be a way to generate ectopic cartilage or bone, which may be useful for the repair of articular cartilage and bone defects. Periosteum was bilaterally dissected from the proximal medial tibia of New Zealand White rabbits. Reactive periosteal tissue was harvested 10, 20, and 40 days postsurgery and analyzed for expression of collagen types I, II, and X, aggrecan, osteopontin, and osteonectin (by reverse transcription-polymerase chain reaction) and collagen types I and II (by immunohistochemistry). Reactive tissue was present in 93% of cases. Histologically, this tissue consisted of hyaline cartilage at follow-up days 10 and 20. Expression of collagen type II and aggrecan was present at 10 and 20 days postsurgery. Highest expression was at 10 days. Expression of collagen type X increased up to 20 days. No significant changes in the mRNA expression of osteopontin or osteonectin were observed. Immunohistochemistry confirmed the presence of cartilage, which was positive for collagen types I and II at 10 days and only for collagen type II at 20 days. At 20 days postsurgery the onset of bone formation was also observed. At 40 days postsurgery, the reactive tissue had almost completely turned into bone. The quality and amount of cartilage formed 10 days postsurgery make this technique potentially useful to fill large cartilage and bone defects. Also, periosteal callus formation, providing possible useful information for tissue engineering techniques, can be studied with this model.
Assuntos
Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Condrogênese/fisiologia , Osteogênese/fisiologia , Periósteo/citologia , Periósteo/fisiologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Periósteo/cirurgia , Projetos Piloto , Coelhos , Tíbia/citologia , Tíbia/fisiologiaRESUMO
OBJECTIVE: Osteoarthritis (OA) development involves a shift of the articular chondrocyte phenotype toward hypertrophic differentiation via still poorly characterized mechanisms. The purpose of this study was to test our hypothesis that the function of BAPX-1/NKX-3.2 is impaired in OA chondrocytes and leads directly to loss of hypertrophic protection of the articular chondrocyte, which is central in the changing chondrocyte phenotype that drives OA. METHODS: Human articular chondrocytes (HACs; from healthy and OA donors) and SW-1353 chondrocytic cells were exposed to bone morphogenetic protein 7 (BMP-7), interleukin-1ß (IL-1ß), tumor necrosis factor, or OA synovial fluid (SF; 20% [volume/volume]). Loss-of-function and gain-of-function experiments for BAPX-1/NKX-3.2 were performed. Mouse experimental models of OA were used, and (immuno)histochemistry of tissue sections was performed. Gene and protein expression of BAPX-1/NKX-3.2 and chondrogenic, hypertrophic, and OA-related mediators were determined by real-time quantitative polymerase chain reaction analysis and immunoblotting. In addition, alkaline phosphatase (AP) activity and prostaglandin E2 levels were measured. RESULTS: BAPX-1/NKX-3.2 expression correlated negatively with expression of chondrocyte hypertrophic markers (RUNX-2, COL10A1, AP), cartilage-degrading enzymes (matrix metalloproteinase 13, ADAMTS-5), and mediators of inflammation (cyclooxygenase 2, IL-6) in healthy and OA chondrocytes, as well as in OA induced chondrocytes. BAPX-1/NKX-3.2 positivity was diminished in articular chondrocytes in the knee joints of mice with experimental OA. Knockdown of BAPX-1/NKX-3.2 in HACs did not influence the expression of SOX9, COL2A1, or aggrecan, but led to an acute hypertrophic shift in the HAC phenotype. Overexpression of BAPX-1/NKX-3.2 decreased hypertrophic gene expression in HACs. Furthermore, the hypertrophic OA chondrocyte phenotype could be counteracted by overexpression of BAPX-1/NKX-3.2 and by BMP-7 in a BAPX-1/NKX-3.2 dependent manner. CONCLUSION: Our findings indicate that BAPX-1/NKX-3.2 is a molecular switch that is involved in controlling the hypertrophic phenotype of the postdevelopmental (OA) articular chondrocyte.
Assuntos
Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Osteoartrite/metabolismo , Fatores de Transcrição/metabolismo , Animais , Artrite Experimental/patologia , Proteína Morfogenética Óssea 7/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Diferenciação Celular , Crescimento Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Humanos , Interleucina-1beta/farmacologia , Camundongos , Osteoartrite/patologia , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
INTRODUCTION: Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. METHODS: Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. RESULTS: A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. CONCLUSIONS: Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.