Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Nutr ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753174

RESUMO

PURPOSE: The original aim of the study was to determine, in a double-blind 3-arm crossover human trial (n = 7), the effect of supplemental levels of iron (25 mg) and zinc (30 mg) on ß-carotene (synthetic) bioavailability (10 h postprandial). However, despite the high dose of supplemental ß-carotene (15 mg) consumed with the high fat (18 g), dairy-based breakfast test meal, there was a negligible postprandial response in plasma and triglyceride rich fraction ß-carotene concentrations. We then systematically investigated the possible reasons for this low bioavailability of ß-carotene. METHODS: We determined (1) if the supplemental ß-carotene could be micellised and absorbed by epithelial cells, using a Caco-2 cell model, (2) if the fat from the test meal was sufficiently bioavailable to facilitate ß-carotene bioavailability, (3) the extent to which the ß-carotene could have been metabolised and converted to retinoic acid/retinol and (4) the effect of the test meal matrix on the ß-carotene bioaccessibility (in vitro digestion) and Caco-2 cellular uptake. RESULTS: We found that (1) The supplemental ß-carotene could be micellised and absorbed by epithelial cells, (2) the postprandial plasma triacylglycerol response was substantial (approximately 75-100 mg dL-1 over 10 h), indicating sufficient lipid bioavailability to ensure ß-carotene absorption, (3) the high fat content of the meal (approximately 18 g) could have resulted in increased ß-carotene metabolism, (4) ß-carotene bioaccessibility from the dairy-based test meal was sixfold lower (p < 0.05) than when digested with olive oil. CONCLUSION: The low ß-carotene bioavailability is probably due to a combination of the metabolism of ß-carotene to retinol by BCMO1 and interactions of ß-carotene with the food matrix, decreasing the bioaccessibility. TRAIL REGISTRATION: The human trail was retrospectively registered (ClinicalTrail.gov ID: NCT05840848).

2.
J Sci Food Agric ; 102(14): 6340-6348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35527679

RESUMO

BACKGROUND: Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS: Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and ß-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION: The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and ß-carotene. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Urtica dioica , Vitamina E , Carotenoides/análise , Costa Rica , Flores/química , Hexanos , Luteína/análise , Vitamina E/análise , Vitaminas/análise , alfa-Tocoferol/análise , beta Caroteno/análise , gama-Tocoferol/análise
3.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086686

RESUMO

Tocomonoenols are vitamin E derivatives present in foods with a single double bond at carbon 11' in the sidechain. The α-tocopherol transfer protein (TTP) is required for the maintenance of normal α-tocopherol (αT) concentrations. Its role in the tissue distribution of α-11'-tocomonoenol (αT1) is unknown. We investigated the tissue distribution of αT1 and αT in wild-type (TTP+/+) and TTP knockout (TTP-/-) mice fed diets with either αT or αT1 for two weeks. αT1 was only found in blood, not tissues. αT concentrations in TTP+/+ mice were in the order of adipose tissue > brain > heart > spleen > lungs > kidneys > small intestine > liver. Loss of TTP function depleted αT in all tissues. αT1, contrary to αT, was still present in the blood of TTP-/- mice (16% of αT1 in TTP+/+). Autoclaving and storage at room temperature reduced αT and αT1 in experimental diets. In conclusion, αT1 is bioavailable, reaches the blood in mice, and may not entirely depend on TTP function for secretion into the systemic circulation. However, due to instability of the test compounds in the experimental diets, further in vivo experiments are required to clarify the role of TTP in αT1 secretion. Future research should consider compound stability during autoclaving of rodent feed.


Assuntos
Proteínas de Transporte/genética , Fígado/metabolismo , Vitamina E/metabolismo , alfa-Tocoferol/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Baço/efeitos dos fármacos , Baço/metabolismo , alfa-Tocoferol/metabolismo
4.
Amino Acids ; 51(3): 407-418, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30430331

RESUMO

Plant foods are rich sources of biologically active peptides that may have a role in the prevention of diseases. Coconut water is a valuable beverage due to its nutrient composition and the presence of bioactive compounds, such as the peptide CnAMP1. It is unknown if CnAMP1 can be absorbed into intestinal cells. We, therefore, aimed to develop and validate a simple reversed-phase liquid chromatographic method to quantify the peptide in Caco-2 and LS180 cell lysates. CnAMP1 standards (1-200 µmol/L) and spiked cell lysates were injected onto a Reprosil-Pur 120 C18-AQ column (4.6 × 250 mm) using acetonitrile:water:trifluoroacetic acid (14.0:85.9:0.1, by volume) as mobile phase in isocratic mode at flow rate of 1 mL/min. The method achieved rapid separation (total run time of 6 min), with linear response, good sensitivity (limit of detection, 8.2 ng; lower limit of quantification, 30.6 ng) and no interfering peaks. Best recoveries (84-96%), accuracies (7.6-14.8%) and precision (1.5-8%) were found for LS180 cell lysates spiked with medium (50 µmol/L) and high (100 µmol/L) amounts of the peptide. Uptake assays detected no peptides in the cell lysates; however, after the first 15-min incubation CnAMP1 underwent partial hydrolysis upon incubation with LS180 cells (29%) and extensive hydrolysis with Caco-2 cells (93%).


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Intestinos/fisiologia , Células Cultivadas , Humanos , Reprodutibilidade dos Testes , Estudos de Validação como Assunto
5.
Eur J Nutr ; 58(5): 2099-2110, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978378

RESUMO

PURPOSE: In this study, we investigated the absorption and excretion kinetics of antioxidant dietary phytochemicals (vitamin E, γ-oryzanol, and ferulic acid) in healthy humans after the ingestion of an oatmeal porridge supplemented with rice bran extract (RBE) prepared with water or with whole milk, and we compared it with the intake of an equivalent dose of the rice bran content, in the form of RBE oil. METHODS: Twelve healthy volunteers (6 men and 6 women) orally ingested RBE oil (2 g) or RBE-enriched porridge (35 g, including 2-g RBE) with water or with milk, in a three-armed, crossover trial. Blood and urine samples were collected at baseline and up to 24 h after intake. Vitamin E (α-, ß-, γ-, and δ-tocopherols and tocotrienols), ferulic acid (FA), and γ-oryzanol (ORY) were quantified by HPLC. RESULTS: The ingestion of RBE-fortified oatmeal porridge and RBE oil significantly increased FA concentrations in plasma, showing faster absorption and higher maximum plasma concentrations after the intake of the porridges, irrespective of the addition of water or milk. At least part of the FA could have been hydrolyzed from ORY. However, plasma vitamin E concentrations did not increase from baseline, and no intact FA esters (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesteryl ferulate, and ß-sitosteryl ferulate) were detected in plasma or urine with any of the meal treatments. CONCLUSIONS: Rice bran extract-enriched porridge and, to a lesser extent, RBE oil, provide relevant sources of bioaccessible and bioavailable ferulic acid, and could be further developed into functional foods with health potential.


Assuntos
Ácidos Cumáricos/farmacocinética , Leite/metabolismo , Oryza , Fenilpropionatos/farmacocinética , Extratos Vegetais/farmacocinética , Vitamina E/farmacocinética , Adulto , Animais , Antioxidantes/farmacocinética , Feminino , Humanos , Hipolipemiantes/farmacocinética , Masculino , Valores de Referência , Água/administração & dosagem , Adulto Jovem
6.
Nutr Neurosci ; 19(1): 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26241203

RESUMO

OBJECTIVES: Aging represents a major risk factor for neurodegenerative diseases such as Alzheimer's disease. Mitochondria are significantly involved in both the aging process and neurodegeneration. One strategy to protect the brain and to prevent neurodegeneration is a healthy lifestyle including a diet rich in antioxidants and polyphenols. Rice bran extract (RBE) contains various antioxidants including natural vitamin E forms (tocopherols and tocotrienols) and gamma-oryzanol. In this work, we examined the effects of a stabilized RBE on mitochondrial function in 18-month-old Naval Medical Research Institute mice (340 mg/kg body weight/day), which received the extract for 3 weeks via oral gavage. METHODS: Mitochondrial parameters were measured using high-resolution respirometry (Oroboros Oxygraph-2k), Western blot analysis, and photometric methods in dissociated brain cells, isolated mitochondria, and brain homogenate. Vitamin E concentrations in blood plasma and brain tissue were measured using HPLC with fluorescence detection. RESULTS: Aging leads to decreased mitochondrial function (decreased mitochondrial respiration and ATP production) and decreased protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1alpha). RBE administration increased alpha-tocopherol concentrations in the brain and compensated for age-related mitochondrial dysfunction by increasing mitochondrial respiration, membrane potential, PGC1alpha protein expression, and citrate synthase activity. Furthermore, resistance of brain cells to sodium nitroprusside-induced nitrosative stress was improved. DISCUSSION: According to these results, RBE is a promising candidate nutraceutical for the prevention of age-related neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oryza/química , Extratos Vegetais/farmacologia , Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/prevenção & controle , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Camundongos , Mitocôndrias/metabolismo , Nitroprussiato/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenilpropionatos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitamina E/farmacologia
7.
Molecules ; 20(9): 16524-39, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378512

RESUMO

Mitochondria are involved in the aging processes that ultimately lead to neurodegeneration and the development of Alzheimer's disease (AD). A healthy lifestyle, including a diet rich in antioxidants and polyphenols, represents one strategy to protect the brain and to prevent neurodegeneration. We recently reported that a stabilized hexanic rice bran extract (RBE) rich in vitamin E and polyphenols (but unsuitable for human consumption) has beneficial effects on mitochondrial function in vitro and in vivo (doi:10.1016/j.phrs.2013.06.008, 10.3233/JAD-132084). To enable the use of RBE as food additive, a stabilized ethanolic extract has been produced. Here, we compare the vitamin E profiles of both extracts and their effects on mitochondrial function (ATP concentrations, mitochondrial membrane potential, mitochondrial respiration and mitochondrial biogenesis) in PC12 cells. We found that vitamin E contents and the effects of both RBE on mitochondrial function were similar. Furthermore, we aimed to identify components responsible for the mitochondria-protective effects of RBE, but could not achieve a conclusive result. α-Tocotrienol and possibly also γ-tocotrienol, α-tocopherol and δ-tocopherol might be involved, but hitherto unknown components of RBE or a synergistic effect of various components might also play a role in mediating RBE's beneficial effects on mitochondrial function.


Assuntos
Etanol/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oryza/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células PC12 , Polifenóis/química , Ratos , Vitamina E/química
8.
Int J Biol Macromol ; 271(Pt 2): 132676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821805

RESUMO

Low bioavailability of phenolic compounds (phenolics) results in low in vivo bioactivity, thus their co-encapsulation could enhance potential health benefits. In this study, reconstitutable nanoliposomes loaded with phenolics varying in solubility were fabricated using spray drying after stabilized by chitosan (CH) or whey protein (WP). The physicochemical properties, biocompatibility, digestive fate, and bioactivity retention of phenolics in different forms were investigated. The surface charge of nanoliposomes (NL) shifted from -18.7 mV to positive due to conjugation with cationic CH (53.1 mV) and WP (14 mV) after spray drying while it was -26.6 mV for only spray-dried phenolics (SDP). Encapsulation efficiency of the tested phenolics ranged between 64.7 % and 95.1 %. Simulated gastrointestinal digestion/Caco-2 cell model was used to estimate the digestive fate of the phenolics yielding up to 3-fold higher bioaccessibility for encapsulated phenolics compared to their native form, combined or individually. However, the cellular uptake or transepithelial transport of phenolics did not differ significantly among formulations, except trans-resveratrol in WP-NL. On the contrary, the suppressive effect of phenolics on fatty acid induced hepatocellular lipid accumulation was strongly dependent on the encapsulation method, no activity was retained by SDP. These findings suggested that reconstitutable nanoliposomes can improve the absorption of phenolics by facilitating their bioaccessibility and thermal and/or processing stability during spray drying.


Assuntos
Quitosana , Lipossomos , Nanopartículas , Fenóis , Secagem por Atomização , Proteínas do Soro do Leite , Quitosana/química , Proteínas do Soro do Leite/química , Lipossomos/química , Humanos , Fenóis/química , Células CACO-2 , Nanopartículas/química , Digestão/efeitos dos fármacos , Transporte Biológico , Disponibilidade Biológica
9.
Mol Nutr Food Res ; 68(4): e2300476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158337

RESUMO

SCOPE: Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS: Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION: This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.


Assuntos
Frutose , Doenças Metabólicas , Oligossacarídeos , Ratos , Masculino , Animais , Frutose/efeitos adversos , Galactose , Ratos Sprague-Dawley , Ingestão de Alimentos , Inflamação/prevenção & controle , Dieta Hiperlipídica/efeitos adversos
10.
Mol Nutr Food Res ; 67(22): e2200684, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37721120

RESUMO

SCOPE: Prenylated chalcones and flavonoids are found in many plants and are believed to have beneficial effects on health when consumed. Xanthohumol is present in beer and likely the most consumed prenylated chalcone, but poorly absorbed and rapidly metabolized and excreted, thus limiting its bioavailability. Micellar formulations of phytochemicals have been shown to improve bioavailability. METHODS AND RESULTS: In a randomized, double-blind, crossover trial with five healthy (three males and two females) volunteers, a single dose of 43 mg was orally administered as a native or micellar formulation. The major human xanthohumol metabolites are quantified in plasma. Unmetabolized free xanthohumol makes 1% or less of total plasma xanthohumol. The area under the plasma concentration-time curve of xanthohumol-7-O-glucuronide following the ingestion of the micellular formulation is 5-fold higher and its maximum plasma concentration is more than 20-fold higher compared to native xanthohumol. CONCLUSION: Metabolism of orally ingested xanthohumol is complex and efficiently converts the parent compound to predominantly glucuronic acid and to a lesser extent sulfate conjugates. The oral bioavailability of micellar xanthohumol is superior to native xanthohumol, making it a useful delivery form for future human trials.


Assuntos
Flavonoides , Micelas , Feminino , Humanos , Masculino , Disponibilidade Biológica , Estudos Cross-Over , Flavonoides/farmacocinética , Método Duplo-Cego
11.
Mol Nutr Food Res ; 67(1): e2200377, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36267033

RESUMO

SCOPE: 20-Hydroxyecdysone (20E) is the main phytochemical present in the fresh arils of Prumnopitys andina. 20E is reported to have anabolic effects by modulation of gene transcription by interaction with nuclear receptors. Our aim is to evaluate the in vitro bioaccessibility, transepithelial transport of 20E, and the capacity of P. andina fruit extract and 20E to activate selected mammalian nuclear receptors in transiently transfected human cells after simulated gastrointestinal digestion. RESULTS: 20E shows good stability, solubility, and micellization after in vitro digestion. 20E is taken up by Caco-2 cells, but poorly transported through the epithelial cell membrane, possibly due to P-glycoprotein-mediated efflux. In transiently transfected HepG2 cells, the fruit extract significantly induces the signal intensity for the liver X receptor (LXR)-α and -ß by 1.6 and 1.4-fold, respectively. In contrast, the treatment with 20E, irrespective of its concentration, did not change the activity of both LXR receptors. No effects are observed for the pregnane X receptor or the constitutive androstane receptor. CONCLUSION: Our findings show that components of the digested P. andina extract other than 20E are responsible for the effects on LXR-α and -ß. Our findings open new perspectives on the potential role of P. andina fruits in cholesterol metabolism and inflammatory diseases.


Assuntos
Frutas , Receptores Citoplasmáticos e Nucleares , Animais , Humanos , Receptores X do Fígado , Células CACO-2 , Digestão , Ecdisterona/farmacologia , Mamíferos
12.
Nutrients ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565661

RESUMO

(1) Background: Mitochondria are the cells' main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer's disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aß) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aß1-40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aß1-40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD.


Assuntos
Doença de Alzheimer , Juglans , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Citrato (si)-Sintase , Humanos , Juglans/metabolismo , Neuritos , Peroxidases , Espécies Reativas de Oxigênio/metabolismo , Rotenona , Ácido alfa-Linolênico/farmacologia
13.
Metabolites ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448532

RESUMO

Hop prenylated flavonoids have been investigated for their in vivo activities due to their broad spectrum of positive health effects. Previous studies on the metabolism of xanthohumol using untargeted methods have found that it is first degraded into 8-prenylnaringenin and 6-prenylnaringenin, by spontaneous cyclisation into isoxanthohumol, and subsequently demethylated by gut bacteria. Further combinations of metabolism by hydroxylation, sulfation, and glucuronidation result in an unknown number of isomers. Most investigations involving the analysis of prenylated flavonoids used surrogate or untargeted approaches in metabolite identification, which is prone to errors in absolute identification. Here, we present a synthetic approach to obtaining reference standards for the identification of human xanthohumol metabolites. The synthesised metabolites were subsequently analysed by qTOF LC-MS/MS, and some were matched to a human blood sample obtained after the consumption of 43 mg of micellarised xanthohumol. Additionally, isomers of the reference standards were identified due to their having the same mass fragmentation pattern and different retention times. Overall, the methods unequivocally identified the metabolites of xanthohumol that are present in the blood circulatory system. Lastly, in vitro bioactive testing should be applied using metabolites and not original compounds, as free compounds are scarcely found in human blood.

14.
Food Sci Nutr ; 10(1): 179-190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35035920

RESUMO

The economics involved in processing cashew nuts (Anacardium occidentale) might alter micronutrient profiles and concentrations. We analyzed and evaluated carotenoids, tocopherols, tocotrienols, minerals, fatty acids, and amino acids in (1) cashew kernels with testa recovered from nuts dried with and without the apple, and (2) testa-free industrial grade baby butts, splits, and white whole kernels using HPLC, ICP-OES, and GC-MS techniques. The results indicated that drying cashews with the respective apple slightly decreased the concentration of some carotenoids and total fatty and amino acids, but increased the concentration of iron, magnesium, and total tocotrienols compared with the conventionally (sun-) dried kernels. We also found high concentrations of carotenoids in the testa-containing kernels. Among the industrially processed kernel, baby butt grade was associated with lower content of ß-carotene, total tocopherols, and tocotrienols, but with significantly higher concentrations in minerals, fatty acids, and amino acids than in white wholes and split grades. Conventional sun drying of cashew nuts revealed results similar to drying with apples regarding micronutrient concentrations. The high micronutrient content of industrial grade BB is reflected in widespread human consumption and better market value.

15.
Mol Nutr Food Res ; 66(22): e2200139, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36101515

RESUMO

SCOPE: Preclinical models have demonstrated the anti-inflammatory and lipid-lowering effects of curcumin. Innovative formulations have been developed to overcome the poor bioavailability of native curcumin. The study hypothesizes that the bioavailability of micellar curcumin is superior to native curcumin and investigates the potential anti-inflammatory and proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration lowering effects. METHODS AND RESULTS: In this double-blind, randomized, crossover trial, 15 healthy volunteers receive micellar or native curcumin (105 mg day-1 ) for 7 days with a ≥7 days washout period. Curcumin and metabolite concentrations are quantified by high-performance liquid chromatography with fluorescence detection (HPLC-FD), and pharmacokinetics are calculated. To analyze anti-inflammatory effects, blood samples (baseline, 2 h, 7 days) are stimulated with 50 ng mL-1 lipopolysaccharides (LPS). Interleukin (IL)-6, tumor-necrosis factor (TNF-α), and PCSK9 concentrations are quantified. Micellar curcumin demonstrates improved bioavailability (≈39-fold higher maximum concentrations, ≈14-fold higher area-under-the-time-concentration curve, p < 0.001) but does not reduce pro-inflammatory cytokines in the chosen model. Subjects receiving micellar curcumin have significantly lower PCSK9 concentrations (≈10% reduction) after 7 days compared to baseline (p = 0.038). CONCLUSION: Micellar curcumin demonstrates an improved oral bioavailability but does not show anti-inflammatory effects in this model. Potential effects on PCSK9 concentrations warrant further investigation.


Assuntos
Curcumina , Pró-Proteína Convertase 9 , Humanos , Curcumina/metabolismo , Micelas , Voluntários Saudáveis , Estudos Cross-Over , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Biomarcadores , Interleucina-6
16.
Food Chem ; 369: 130940, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474292

RESUMO

Berries are rich food sources of potentially health-beneficial (poly)phenols. However, they may undergo chemical modifications during gastrointestinal digestion. The effect of simulated gastrointestinal digestion on the content and composition of secondary metabolites from Gaultheria phillyreifolia and G. poeppigii berries was studied. The influence of the digested extracts on the in vitro metabolism and absorption of carbohydrates was evaluated. After simulated digestion, 31 compounds were detected by UHPLC-DAD-MS. The total content of anthocyanins decreased by 98-100%, flavonols by 44-56%, phenylpropanoids by 49-75% and iridoids by 33-45%, the latter showing the highest stability during digestion. Digested extracts inhibited α-glucosidase (IC50 2.8-24.9 µg/mL) and decreased the glucose uptake in Caco-2 cells by 17-28%. Moreover, a decrease in the mRNA expression of glucose transporters SGLT1 (38-92%), GLUT2 (45-96%), GLUT5 (28-89%) and the enzyme sucrase-isomaltase (82-97%) was observed. These results show the effect of simulated gastrointestinal digestion on the content and composition of Gaultheria berries.


Assuntos
Gaultheria , Polifenóis , Antocianinas , Antioxidantes , Células CACO-2 , Digestão , Frutas/química , Glucose , Humanos , Iridoides , Extratos Vegetais , Polifenóis/análise
17.
Free Radic Biol Med ; 177: 24-30, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666150

RESUMO

Contrary to the major vitamin E congener α-tocopherol, which carries a saturated sidechain, and α-tocotrienol, with a threefold unsaturated sidechain, little is known about the intracellular fate of α-tocomonoenol, a minor vitamin E derivative with a single double bond in C11'-position of the sidechain. We hypothesized that, due to structural similarities, the uptake and metabolism of α-tocomonoenol will resemble that of α-tocopherol. Cytotoxicity, cellular uptake of α-tocomonoenol, α-tocopherol and α-tocotrienol and conversion into the short-chain metabolites αCEHC and αCMBHC were studied in HepG2 cells. α-Tocomonoenol did not show significant effects on cell viability and its uptake was similar to that observed for α-tocopherol and significantly lower than for α-tocotrienol. α-Tocomonoenol was mainly metabolized to αCMBHC in liver cells, but to a lower extent than α-tocotrienol, while α-tocopherol was not metabolized in quantifiable amounts at all. In summary, the similarities in the cytotoxicity, uptake and metabolism of α-tocomonoenol and α-tocopherol suggest that this minor vitamin E congener deserves more attention in future research with regard to its potential vitamin E activity.


Assuntos
Vitamina E , alfa-Tocoferol , Transporte Biológico , Células Hep G2 , Humanos , Vitamina E/análogos & derivados
18.
Mol Nutr Food Res ; 65(24): e2100613, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665507

RESUMO

SCOPE: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. METHODS AND RESULTS: In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly. CONCLUSION: The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.


Assuntos
Curcumina , Adulto , Disponibilidade Biológica , Células CACO-2 , Estudos Cross-Over , Curcuma , Humanos , Solubilidade
19.
Food Funct ; 11(5): 4138-4145, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347274

RESUMO

Whole fruit and vegetable consumption is universally promoted as healthy, to a large extent due to their high contents of phytochemicals, including phenolics and dietary fibre. The major fibre in fruits and vegetables, pectin, however also decreases the bioavailability of phenolics and carotenoids. While ascorbic acid, sucrose and olive oil lipids may increase the bioavailability of various phenolics, their effects in the presence of pectin have not been investigated. This study aimed to evaluate the modulating effects of sucrose (5.0%), ascorbic acid (0.1%) and olive oil (2.5%) on the inhibition by pectin (2.0%) of ferulic acid and naringenin bioaccessibility and Caco-2 cellular uptake. Pectin reduced the bioaccessbility of ferulic acid and naringenin, by 45 and 65%, respectively. Sucrose mitigated the inhibitory effect of pectin and increased naringenin bioaccessbility from 7.9 to 15.0%. When added to digestions with ferulic acid and pectin, sucrose and olive oil totally negated pectin's bioaccessibility inhibition. The Caco-2 cellular uptake of bioaccessible ferulic acid was high (58.3%) and pectin and ascorbic acid together increased it to 85.6%. The Caco-2 cellular uptake of bioaccessible naringenin was also high (47.0%) and pectin increased it to 95.0%. Sucrose and olive oil for ferulic acid and only sucrose for naringenin totally negated the inhibitory effect of pectin on the overall in vitro availability (cellular uptake as percentage of amount of phenolic initially digested). The ameliorating effects of sucrose and olive oil are due to substantially increased bioaccessibility of the phenolics, probably due reduced encapsulation of the phenolics in pectin.


Assuntos
Ácido Ascórbico/farmacologia , Ácidos Cumáricos/metabolismo , Lipídeos/farmacologia , Azeite de Oliva/farmacologia , Pectinas/farmacologia , Sacarose/farmacologia , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Flavanonas/metabolismo , Humanos , Lipídeos/química
20.
Redox Biol ; 19: 28-36, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098456

RESUMO

Liver cells express a cytosolic α-tocopherol transfer protein (αTTP) with high binding affinity for α-tocopherol (αT) and much lower affinities for the non-αT congeners. The role of αTTP in the intracellular distribution of the different vitamin E forms is currently unknown. We therefore investigated the intracellular localization of αT, γ-tocopherol (γT), α-tocotrienol (αT3), and γ-tocotrienol (γT3) in cultured hepatic cells with and without stable expression of αTTP. We first determined cellular uptake of the four congeners and found the methylation of the chromanol ring and saturation of the sidechain to be important factors, with tocotrienols being taken up more efficiently than tocopherols and the γ-congeners more than the α-congeners, irrespective of the expression of αTTP. This, however, could perhaps also be due to an observed higher stability of tocotrienols, compared to tocopherols, in culture media rather than a higher absorption. We then incubated HepG2 cells and αTTP-expressing HepG2 cells with αT, γT, αT3, or γT3, isolated organelle fractions by density gradient centrifugation, and determined the concentrations of the congeners in the subcellular fractions. All four congeners were primarily associated with the lysosomes, endoplasmic reticulum, and plasma membrane, whereas only αT correlated with mitochondria. Neither the chromanol ring methylation or sidechain saturation, nor the expression of αTTP were important factors for the intracellular distribution of vitamin E. In conclusion, αTTP does not appear to regulate the uptake and intracellular localization of different vitamin E congeners in cultured liver cells.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Tocotrienóis/metabolismo , alfa-Tocoferol/metabolismo , gama-Tocoferol/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células Hep G2 , Hepatócitos/citologia , Humanos , Lisossomos/metabolismo , Tocotrienóis/análise , alfa-Tocoferol/análise , gama-Tocoferol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA