Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; : 106867, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168357

RESUMO

Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100% inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 µL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06% guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100%, 85%, 40%, and 35% similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.

2.
Saudi J Biol Sci ; 31(6): 104005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741655

RESUMO

Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), is an economically important invasive cassava pest responsible for the massive devastation of cassava in Asia and African continent. Initially, identifying this invasive pest posed challenges because it closely resembled native mealybug species. Additionally, the traditional morphological identification process is labor-intensive and time-consuming. Detecting invasive pests at an early stage is crucial, hence development of a rapid detection assay is essential. In the current study, we have developed a simple, rapid, sensitive, and efficient molecular detection assay for P. manihoti based on Recombinase Polymerase Amplification (RPA). The primers for the RPA assay were designed using unique nucleic acid sequences of P. manihoti, and the protocol was standardized. Specificity test demonstrated that the RPA assay could amplify DNA of P. manihoti only, and no amplification was observed in six other mealybug species. The specificity of assay was confirmed using SYBR green-based colorimetric detection and gel electrophoresis where positive samples showed 195 bp amplicon size in P. manihoti samples. The assay successfully amplified P. manihoti DNA in thirty minutes at an annealing temperature of 41° C in a water bath and displayed a sensitivity of 72.5 picograms per microliter. The assay's simplicity, rapidity, and high sensitivity make it a valuable tool for detecting and monitoring P. manihoti in quarantine stations and facilitating in development of a portable diagnostic kit.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39216277

RESUMO

Insecticide resistance is a global concern and requires immediate attention to manage dreadful insect pests. One of the resistance mechanisms adopted by insects is through ATP-binding cassette (ABC) transporter proteins. These proteins rapidly transport and eliminate the insecticidal molecules across the lipid membranes (Phase III detoxification mechanism). In the present study, we investigated the potential role of ABC transporter genes in imparting insecticide resistance in field-collected insecticide resistant larvae of eggplant shoot and fruit borer (Leucinodes orbonalis; Crambidae: Lepidoptera). Dose-mortality bioassays against five insecticidal molecules revealed moderate to high levels of insecticide resistance (32.2. to 134.1-fold). Thirty-one genes encoding ABC transporter proteins were mined from the transcriptome resources of L. orbonalis. They were classified under eight sub-families (ABCA to ABCH). Phylogenetic analysis indicated ABCG is the most divergent, composed of nine genes as compared to many other insects. Transcriptome analysis of the insecticide resistant and susceptible strains of L. orbonalis revealed differential expression of 13 ABC transporter genes. The altered expression of these genes was further validated using qRT-PCR. The knockdown studies indicated the involvement of ABCD1 and ABCG2 genes in chlorantraniliprole resistance in the insecticide-resistant strain of L. orbonalis. This study unveils the additional mechanisms employed by L. orbonalis in resisting insecticide toxicity through accelerated excretion mode. These ABCD and ABCG family genes could be candidate targets in developing genome-assisted pest management strategies in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA