Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16597-16609, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478053

RESUMO

Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.

2.
Nat Nanotechnol ; 17(11): 1214-1221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36280763

RESUMO

Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA