Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Drug Targets ; 25(4): 261-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375843

RESUMO

Plant-based phytochemicals, including flavonoids, alkaloids, tannins, saponins, and other metabolites, have attracted considerable attention due to their central role in synthesizing nanomaterials with various biomedical applications. Hemicelluloses are the second most abundant among naturally occurring heteropolymers, accounting for one-third of all plant constituents. In particular, xylans, mannans, and arabinoxylans are structured polysaccharides derived from hemicellulose. Mannans and xylans are characterized by their linear configuration of ß-1,4-linked mannose and xylose units, respectively. At the same time, arabinoxylan is a copolymer of arabinose and xylose found predominantly in secondary cell walls of seeds, dicotyledons, grasses, and cereal tissues. Their widespread use in tissue engineering, drug delivery, and gene delivery is based on their properties, such as cell adhesiveness, cost-effectiveness, high biocompatibility, biodegradability, and low immunogenicity. Moreover, it can be easily functionalized, which expands their potential applications and provides them with structural diversity. This review comprehensively addresses recent advances in the field of biomedical applications. It explores the potential prospects for exploiting the capabilities of mannans and xylans in drug delivery, gene delivery, and tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Mananas , Engenharia Tecidual , Xilanos , Xilanos/química , Humanos , Engenharia Tecidual/métodos , Mananas/química , Técnicas de Transferência de Genes , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA