Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(5): 2908-2916, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31950126

RESUMO

Time-dependent density functional theory (TDDFT) has been applied to the calculation of absorption spectra for two-dimensional atomic layer materials: mono-layer and bi-layer hexagonal boron nitride (h-BN) and mono-layer transition metal dichalcogenides, MoS2 and MoSe2. We reveal that the character of the first bright exciton state of bi-layer h-BN is dependent on the layer stacking type through the use of many-body perturbation theory (MBPT) calculations, i.e., the electron and hole in the AA' stacking are present in the same layer (an intralayer exciton) while the A'B stacking exhibits an interlayer exciton. We demonstrate that the TDDFT approach with the meta-generalized gradient approximation to the exchange-correlation (XC) potential and the Bootstrap XC kernel can capture the characteristics of the absorption peaks that correspond to these excitons without computationally heavy GW and Bethe-Salpeter equation calculations. We also show that the TDDFT method can capture the qualitative features of the absorption spectra for mono-layer transition metal dichalcogenides, MoS2 and MoSe2, although the exciton binding energies are underestimated. This study elucidates the usefulness of the TDDFT approach for the qualitative investigation of the optical properties of two-dimensional atomic layer materials.

2.
Phys Rev Lett ; 121(13): 133001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312034

RESUMO

Electron-positron interactions have been utilized in various fields of science. Here we develop time-dependent multicomponent density functional theory to study the coupled electron-positron dynamics from first principles. We prove that there are coupled time-dependent single-particle equations that can provide the electron and positron density dynamics, and derive the formally exact expression for their effective potentials. Introducing the adiabatic local density approximation to time-dependent electron-positron correlation, we apply the theory to the dynamics of a positronic lithium hydride molecule under a laser field. We demonstrate the significance of the coupling between electronic and positronic motion by revealing the complex positron detachment mechanism and the suppression of electronic resonant excitation by the screening effect of the positron.

3.
Phys Rev Lett ; 119(26): 263401, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328727

RESUMO

We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

4.
Phys Chem Chem Phys ; 17(44): 29647-54, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26477957

RESUMO

We study the thermoelectric properties of tin selenide (SnSe) by using first-principles calculations coupled with the Boltzmann transport theory. A recent experimental study showed that SnSe gives an unprecedented thermoelectric figure of merit ZT of 2.6 ± 0.3 in the high-temperature (>750 K) phase, while ZT in the low-temperature phase (<750 K) is much smaller than that of the high-temperature phase. Here we explore the possibility of increasing ZT in the low-temperature regime by carrier doping. For this purpose, we adopt a supercell approach to model the doped systems. We first examine the validity of the conventional rigid-band approximation (RBA), and then investigate the thermoelectric properties of Ag or Bi doped SnSe as p- or n-type doped materials using our supercell method. We found that both types of doping improve ZT and/or the power factor of the low-temperature phase SnSe, but only after the adjustment of the appropriate doping level is achieved.

5.
Phys Chem Chem Phys ; 17(43): 29271-80, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26467353

RESUMO

We study the exact nuclear time-dependent potential energy surface (TDPES) for laser-induced electron localization with a view to eventually developing a mixed quantum-classical dynamics method for strong-field processes. The TDPES is defined within the framework of the exact factorization [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett., 2010, 105, 123002] and contains the exact effect of the couplings to the electronic subsystem and to any external fields within a scalar potential. We compare its features with those of the quasistatic potential energy surfaces (QSPES) often used to analyse strong-field processes. We show that the gauge-independent component of the TDPES has a mean-field-like character very close to the density-weighted average of the QSPESs. Oscillations in this component are smoothened out by the gauge-dependent component, and both components are needed to yield the correct force on the nuclei. Once the localization begins to set in, the gradient of the exact TDPES tracks one QSPES and then switches to the other, similar to the description provided by surface-hopping between QSPESs. We show that evolving an ensemble of classical nuclear trajectories on the exact TDPES accurately reproduces the exact dynamics. This study suggests that the mixed quantum-classical dynamics scheme based on evolving multiple classical nuclear trajectories on the exact TDPES will be a novel and useful method to simulate strong field processes.

6.
J Chem Phys ; 142(8): 084303, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25725727

RESUMO

The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

7.
Phys Rev Lett ; 110(26): 263001, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848868

RESUMO

We study the exact time-dependent potential energy surface (TDPES) in the presence of strong nonadiabatic coupling between the electronic and nuclear motion. The concept of the TDPES emerges from the exact factorization of the full electron-nuclear wave function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. Employing a one-dimensional model system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of the steps and the nature of the switching between the adiabatic pieces of the TDPES.

8.
Phys Rev E ; 101(2-1): 023313, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168589

RESUMO

The time-dependent variational principle is used to optimize the linear and nonlinear parameters of Gaussian basis functions to solve the time-dependent Schrödinger equation in one and three dimensions for a one-body soft Coulomb potential in a laser field. The accuracy is tested comparing the solution to finite difference grid calculations using several examples. The approach is not limited to one particle systems and the example presented for two electrons demonstrates the potential to tackle larger systems using correlated basis functions.

9.
J Phys Chem A ; 113(11): 2578-83, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19220025

RESUMO

As the first step to understand the reaction mechanism and diastereoselectivity of sodium borohydride reduction of ketones, ab initio Car-Parrinello molecular dynamics simulation has been performed on a solution of NaBH4 in liquid methanol. According to pointwise thermodynamic integration involving constrained molecular dynamics simulations, it was strongly suggested that Na+ and BH4(-) are associated in the solvent forming contact ion pairs. Thus we propose a new transition state structure model that contains complexation of the carbonyl oxygen with sodium cation. Predicted diastereoselectivity of the reduction of some substituted cyclohexanones applying this novel transition state model is in good agreement with experimental data, showing its validity and effectiveness to investigate the diastereoselectivity of NaBH4 reduction of other ketones.


Assuntos
Boroidretos/química , Modelos Químicos , Simulação por Computador , Cetonas/química , Substâncias Redutoras , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA