Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11771-11780, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889182

RESUMO

The removal of organic micropollutants in granular activated carbon (GAC) filters can be attributed to adsorption and biological degradation. These two processes can interact with each other or proceed independently. To illustrate the differences in their interaction, three 14C-labeled organic micropollutants with varying potentials for adsorption and biodegradation were selected to study their adsorption and biodegradation in columns with adsorbing (GAC) and non-adsorbing (sand) filter media. Using 14CO2 formation as a marker for biodegradation, we demonstrated that the biodegradation of poorly adsorbing N-nitrosodimethylamine (NDMA) was more sensitive to changes in the empty bed contact time (EBCT) compared with that of moderately adsorbing diclofenac. Further, diclofenac that had adsorbed under anoxic conditions could be degraded when molecular oxygen became available, and substantial biodegradation (≥60%) of diclofenac could be achieved with a 15 min EBCT in the GAC filter. These findings suggest that the retention of micropollutants in GAC filters, by prolonging the micropollutant residence time through adsorption, can enable longer time periods for degradations than what the hydraulic retention time would allow for. For the biologically recalcitrant compound carbamazepine, differences in breakthrough between the 14C-labeled and nonradiolabeled compounds revealed a substantial retention via successive adsorption-desorption, which could pose a potential challenge in the interpretation of GAC filter performance.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Diclofenaco , Filtração , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Diclofenaco/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Dimetilnitrosamina/química
2.
J Hazard Mater ; 472: 134449, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733780

RESUMO

The capacity for organic micropollutant removal in granular activated carbon (GAC) filters for wastewater treatment changes over time. These changes are in general attributed to changes in adsorption, but may in some cases also be affected by biological degradation. Knowledge on the degradation of organic micropollutants, however, is scarce. In this work, the degradation of micropollutants in several full-scale GAC and sand filters was investigated through incubation experiments over a period of three years, using 14C-labeled organic micropollutants with different susceptibilities to biological degradation (ibuprofen, diclofenac, and carbamazepine), with parallel 16S rRNA gene sequencing. The results showed that the degradation of diclofenac and ibuprofen in GAC filters increased with increasing numbers of bed volumes when free oxygen was available in the filter, while variations over filter depth were limited. Despite relatively large differences in bacterial composition between filters, a degradation of diclofenac was consistently observed for the GAC filters that had been operated with high influent oxygen concentration (DO >8 mg/L). The results of this comprehensive experimental work provide an increased understanding of the interactions between microbial composition, filter material, and oxygen availability in the biological degradation of organic micropollutants in GAC filters.


Assuntos
Biodegradação Ambiental , Carbamazepina , Diclofenaco , Filtração , Ibuprofeno , Poluentes Químicos da Água , Diclofenaco/química , Poluentes Químicos da Água/química , Ibuprofeno/química , Carbamazepina/química , Carvão Vegetal/química , Bactérias/metabolismo , Bactérias/genética , RNA Ribossômico 16S/genética , Oxigênio/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA