Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Diabetologia ; 66(10): 1943-1958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460827

RESUMO

AIMS/HYPOTHESIS: Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS: Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS: There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cß; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION: We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY: The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).


Assuntos
Diabetes Mellitus , MicroRNAs , Humanos , Repressão Epigenética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , RNA Interferente Pequeno/metabolismo , Cicatrização/genética , Células Epiteliais/metabolismo
2.
J Transl Med ; 21(1): 650, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743503

RESUMO

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Humanos , Animais , Ratos , Suínos , Porco Miniatura , Degeneração Retiniana/terapia , Neurônios , Instituições de Assistência Ambulatorial
3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762529

RESUMO

While cells in the human body function in an environment where the blood supply constantly delivers nutrients and removes waste, cells in conventional tissue culture well platforms are grown with a static pool of media above them and often lack maturity, limiting their utility to study cell biology in health and disease. In contrast, organ-chip microfluidic systems allow the growth of cells under constant flow, more akin to the in vivo situation. Here, we differentiated human induced pluripotent stem cells into dopamine neurons and assessed cellular properties in conventional multi-well cultures and organ-chips. We show that organ-chip cultures, compared to multi-well cultures, provide an overall greater proportion and homogeneity of dopaminergic neurons as well as increased levels of maturation markers. These organ-chips are an ideal platform to study mature dopamine neurons to better understand their biology in health and ultimately in neurological disorders.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células Cultivadas , Técnicas de Cultura de Órgãos
4.
Glia ; 69(9): 2146-2159, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33956384

RESUMO

Inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) causes a rare and debilitating form of X-linked psychomotor disability known as Allan Herndon Dudley syndrome (AHDS). One of the most prominent pathophysiological symptoms of MCT8-deficiency is hypomyelination. Here, patient-derived induced pluripotent stem cells (iPSCs) were used to study the role of MCT8 and TH on the maturation of oligodendrocytes. Interestingly, neither MCT8 mutations nor reduced TH affected the in vitro differentiation of control or MCT8-deficient iPSCs into oligodendrocytes. To assess whether patient-derived iPSC-derived oligodendrocyte progenitor cells (iOPCs) could provide myelinating oligodendrocytes in vivo, cells were transplanted into the shiverer mouse corpus callosum where they survived, migrated, and matured into myelinating oligodendrocytes, though the myelination efficiency was reduced compared with control cells. When MCT8-deficient and healthy control iOPCs were transplanted into a novel hypothyroid immunodeficient triple knockout mouse (tKO, mct8-/- ; oatp1c1-/- ; rag2-/- ), they failed to provide behavioral recovery and did not mature into oligodendrocytes in the hypothyroid corpus callosum, demonstrating the critical role of TH transport across brain barriers in oligodendrocyte maturation. We conclude that MCT8 plays a cell autonomous role in oligodendrocyte maturation and that functional TH transport into the central nervous system will be required for developing an effective treatment for MCT8-deficient patients.


Assuntos
Células Precursoras de Oligodendrócitos , Simportadores , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Humanos , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo
5.
Nanomedicine ; 32: 102332, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181273

RESUMO

Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.


Assuntos
Córnea/patologia , Diabetes Mellitus/patologia , Células Epiteliais/patologia , Nanopartículas/química , Polímeros/química , RNA/uso terapêutico , Células-Tronco/patologia , Cicatrização , Adenoviridae/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Cultivadas , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Oligonucleotídeos Antissenso/farmacologia , RNA/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
6.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396621

RESUMO

Human intestinal organoids (HIOs) are increasingly being used to model intestinal responses to various stimuli, yet few studies have confirmed the fidelity of this modeling system. Given that the interferon-gamma (IFN-γ) response has been well characterized in various other cell types, our goal was to characterize the response to IFN-γ in HIOs derived from induced pluripotent stem cells (iPSCs). To achieve this, iPSCs were directed to form HIOs and subsequently treated with IFN-γ. Our results demonstrate that IFN-γ phosphorylates STAT1 but has little effect on the expression or localization of tight and adherens junction proteins in HIOs. However, transcriptomic profiling by microarray revealed numerous upregulated genes such as IDO1, GBP1, CXCL9, CXCL10 and CXCL11, which have previously been shown to be upregulated in other cell types in response to IFN-γ. Notably, "Response to Interferon Gamma" was determined to be one of the most significantly upregulated gene sets in IFN-γ-treated HIOs using gene set enrichment analysis. Interestingly, similar genes and pathways were upregulated in publicly available datasets contrasting the gene expression of in vivo biopsy tissue from patients with IBD against healthy controls. These data confirm that the iPSC-derived HIO modeling system represents an appropriate platform to evaluate the effects of various stimuli and specific environmental factors responsible for the alterations in the intestinal epithelium seen in various gastrointestinal conditions such as inflammatory bowel disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Interferon gama/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Claudinas/genética , Claudinas/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Organoides/citologia , Organoides/metabolismo
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093254

RESUMO

In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.


Assuntos
Colo/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Linhagem Celular , Colo/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Organoides/metabolismo , Organoides/patologia
8.
Proteomics ; 19(3): e1800213, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30515959

RESUMO

Retinal degenerative diseases lead to blindness with few treatments. Various cell-based therapies are aimed to slow the progression of vision loss by preserving light-sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co-culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co-cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid-derived 2)-like 2 (NRF2) mediated oxidative response signaling as an hNPC-induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.


Assuntos
Células-Tronco Neurais/transplante , Células Fotorreceptoras/citologia , Degeneração Retiniana/terapia , Sobrevivência Celular , Células Cultivadas , Proteínas do Olho/análise , Humanos , Células-Tronco Neurais/citologia , Células Fotorreceptoras/patologia , Proteômica , Degeneração Retiniana/patologia
9.
Stem Cells ; 36(7): 1122-1131, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656478

RESUMO

Early dysfunction of cortical motor neurons may underlie the initiation of amyotrophic lateral sclerosis (ALS). As such, the cortex represents a critical area of ALS research and a promising therapeutic target. In the current study, human cortical-derived neural progenitor cells engineered to secrete glial cell line-derived neurotrophic factor (GDNF) were transplanted into the SOD1G93A ALS rat cortex, where they migrated, matured into astrocytes, and released GDNF. This protected motor neurons, delayed disease pathology and extended survival of the animals. These same cells injected into the cortex of cynomolgus macaques survived and showed robust GDNF expression without adverse effects. Together this data suggests that introducing cortical astrocytes releasing GDNF represents a novel promising approach to treating ALS. Stem Cells 2018;36:1122-1131.


Assuntos
Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Esclerose Lateral Amiotrófica , Animais , Modelos Animais de Doenças , Neurônios Motores , Ratos
10.
Curr Opin Neurol ; 31(5): 655-661, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30080719

RESUMO

PURPOSE OF REVIEW: This review analyses the recent efforts to develop therapeutics using transplantation of stem cells for amyotrophic lateral sclerosis (ALS). RECENT FINDINGS: Stem cells are considered as a potential therapeutic for a variety of neurodegenerative diseases, in an effort to either replace cells that are lost, or to enhance the survival of the remaining cells. In ALS, meaningful attempts to verify the safety and feasibility of many cell transplantation approaches have only recently been completed or are underway. Due to the complexities of reconstructing complete motor neuron circuits in adult patients, current approaches aim rather to prolong the survival and function of existing motor neurons through paracrine effects or production of new interneurons or astrocytes. Recent trials showed that autologous mesenchymal stem cells can be safely injected intrathecally, transiently enhancing growth factor concentrations and anti-inflammatory cytokines into the cerebrospinal fluid. Likewise, a small pilot study investigating safety of autologous transplantation of regulatory T-cells for immunomodulation was recently completed. Finally, early phase trials demonstrated safety of direct surgical transplantation of heterologous fetal-derived neural progenitor cells into the spinal cord of ALS patients, as an attempt to provide a lasting source of local trophic support for motor neurons. SUMMARY: With clinical trials recently demonstrating that stem cell transplantation can be safe and well tolerated in ALS, the field is positioned to complete pivotal controlled trials to determine efficacy.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco/métodos , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais
11.
Stem Cells ; 35(10): 2105-2114, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28748596

RESUMO

Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.


Assuntos
Células-Tronco/metabolismo , Cicatrização/fisiologia , Humanos
13.
Biologicals ; 56: 67-83, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30150108

RESUMO

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes , Testes de Carcinogenicidade , Guias como Assunto , Humanos , Controle de Qualidade , Medicina Regenerativa
15.
J Neurochem ; 140(6): 874-888, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935037

RESUMO

The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Células 3T3 , Animais , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
16.
Hum Mol Genet ; 24(11): 3257-71, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740845

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Ácido Glutâmico/fisiologia , Doença de Huntington/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/fisiologia , Idade de Início , Animais , Apoptose , Sobrevivência Celular , Células Cultivadas , Humanos , Doença de Huntington/patologia , Camundongos
17.
Mol Ther ; 24(3): 556-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26666451

RESUMO

Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Sítios de Ligação , Ordem dos Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Mutação , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , RNA Guia de Cinetoplastídeos , Ratos , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Distrofias Retinianas/terapia , Retinose Pigmentar/terapia , Sinapses/metabolismo
18.
Stem Cells ; 33(8): 2537-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869002

RESUMO

Pluripotent stem cell-derived retinal pigment epithelial (RPE) cells are currently being tested for cell replacement in late-stage age-related macular degeneration (AMD). However, preserving vision at early-stages may also be possible. Here, we demonstrate that transplantation of neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iNPCs) limits disease progression in the Royal College of Surgeons rat, a preclinical model of AMD. Grafted-iNPCs survived, remained undifferentiated, and distributed extensively in a laminar fashion in the subretinal space. Retinal pathology resulting from the accumulation of undigested photoreceptor outer segments (POS) was significantly reduced in iNPC-injected rats compared with controls. Phagosomes within grafted-iNPCs contained POS, suggesting that iNPCs had compensated for defective POS phagocytosis by host-RPE. The iNPC-treated eyes contained six to eight rows of photoreceptor nuclei that spanned up to 5 mm in length in transverse retinal sections, compared with only one row of photoreceptors in controls. iNPC treatment fully preserved visual acuity measured by optokinetic response. Electrophysiological recordings revealed that retina with the best iNPC-protected areas were 140-fold more sensitive to light stimulation than equivalent areas of contralateral eyes. The results described here support the therapeutic utility of iNPCs as autologous grafts for early-stage of AMD.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco , Visão Ocular , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Ratos
19.
J Neurosci ; 34(47): 15587-600, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411487

RESUMO

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Córtex Motor/enzimologia , Córtex Motor/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/mortalidade , Animais , Morte Celular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Herpesvirus Suídeo 1/genética , Humanos , Masculino , Camundongos , Junção Neuromuscular/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Superóxido Dismutase-1 , Transfecção
20.
Hum Mol Genet ; 22(R1): R32-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23945396

RESUMO

Based on cloning studies in mammals, all adult human cells theoretically contain DNA that is capable of creating a whole new person. Cells are maintained in their differentiated state by selectively activating some genes and silencing. The dogma until recently was that cell differentiation was largely fixed unless exposed to the environment of an activated oocyte. However, it is now possible to activate primitive pluripotent genes within adult human cells that take them back in time to a pluripotent state (termed induced pluripotent stem cells). This technology has grown at an exponential rate over the past few years, culminating in the Nobel Prize in medicine. Discussed here are recent developments in the field as they relate to regenerative medicine, with an emphasis on creating functional cells, editing their genome, autologous transplantation and how this ground-breaking field may eventually impact human aging.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes/fisiologia , Medicina Regenerativa/métodos , Ativação Transcricional , Envelhecimento/fisiologia , Animais , Senescência Celular/genética , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA