Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 72, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760212

RESUMO

BACKGROUND: Drought is an important constraint on grapevine sustainability. Vitis riparia, widely used in rootstock and scion breeding, has been studied in isolated leaf drying response studies; however, it is essential to identify key root and shoot water deficit signaling traits in intact plants. This information will aid improved scion and rootstock selection and management practices in grapevine. RNAseq data were generated from V. riparia roots and shoots under water deficit and well-watered conditions to determine root signaling and shoot responses to water deficit. RESULTS: Shoot elongation, photosynthetic rate, and stomatal conductance were significantly reduced in water deficit (WD) treated than in well-watered grapevines. RNAseq analysis indicated greater transcriptional differences in shoots than in roots under WD, with 6925 and 1395 genes differentially expressed, respectively (q-value < 0.05). There were 50 and 25 VitisNet pathways significantly enriched in WD relative to well-watered treatments in grapevine shoots and roots, respectively. The ABA biosynthesis genes beta-carotene hydroxylase, zeaxanthin epoxidase, and 9-cis-epoxycarotenoid dioxygenases were up-regulated in WD root and WD shoot. A positive enrichment of ABA biosynthesis genes and signaling pathways in WD grapevine roots indicated enhanced root signaling to the shoot. An increased frequency of differentially expressed reactive oxygen species scavenging (ROS) genes were found in the WD shoot. Analyses of hormone signaling genes indicated a strong ABA, auxin, and ethylene network and an ABA, cytokinin, and circadian rhythm network in both WD shoot and WD root. CONCLUSIONS: This work supports previous findings in detached leaf studies suggesting ABA-responsive binding factor 2 (ABF2) is a central regulator in ABA signaling in the WD shoot. Likewise, ABF2 may have a key role in V. riparia WD shoot and WD root. A role for ABF3 was indicated only in WD root. WD shoot and WD root hormone expression analysis identified strong ABA, auxin, ethylene, cytokinin, and circadian rhythm signaling networks. These results present the first ABA, cytokinin, and circadian rhythm signaling network in roots under water deficit. These networks point to organ specific regulators that should be explored to further define the communication network from soil to shoot.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Transcriptoma , Vitis/genética , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Desidratação , Secas , Etilenos/metabolismo , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Vitis/fisiologia
2.
BMC Genomics ; 19(1): 57, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343235

RESUMO

BACKGROUND: De novo heterozygous assembly is an ongoing challenge requiring improved assembly approaches. In this study, three strategies were used to develop de novo Vitis vinifera 'Sultanina' genome assemblies for comparison with the inbred V. vinifera (PN40024 12X.v2) reference genome and a published Sultanina ALLPATHS-LG assembly (AP). The strategies were: 1) a default PLATANUS assembly (PLAT_d) for direct comparison with AP assembly, 2) an iterative merging strategy using METASSEMBLER to combine PLAT_d and AP assemblies (MERGE) and 3) PLATANUS parameter modifications plus GapCloser (PLAT*_GC). RESULTS: The three new assemblies were greater in size than the AP assembly. PLAT*_GC had the greatest number of scaffolds aligning with a minimum of 95% identity and ≥1000 bp alignment length to V. vinifera (PN40024 12X.v2) reference genome. SNP analysis also identified additional high quality SNPs. A greater number of sequence reads mapped back with zero-mismatch to the PLAT_d, MERGE, and PLAT*_GC (>94%) than was found in the AP assembly (87%) indicating a greater fidelity to the original sequence data in the new assemblies than in AP assembly. A de novo gene prediction conducted using seedless RNA-seq data predicted > 30,000 coding sequences for the three new de novo assemblies, with the greatest number (30,544) in PLAT*_GC and only 26,515 for the AP assembly. Transcription factor analysis indicated good family coverage, but some genes found in the VCOST.v3 annotation were not identified in any of the de novo assemblies, particularly some from  the MYB and ERF families. CONCLUSIONS: The PLAT_d and PLAT*_GC had a greater number of synteny blocks with the V. vinifera (PN40024 12X.v2) reference genome than AP or MERGE. PLAT*_GC provided the most contiguous assembly with only 1.2% scaffold N, in contrast to AP (10.7% N), PLAT_d (6.6% N) and Merge (6.4% N). A PLAT*_GC pseudo-chromosome assembly with chromosome alignment to the reference genome V. vinifera, (PN40024 12X.v2) provides new information for use in seedless grape genetic mapping studies. An annotated de novo gene prediction for the PLAT*_GC assembly, aligned with VitisNet pathways provides new seedless grapevine specific transcriptomic resource that has excellent fidelity with the seedless short read sequence data.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Genômica/métodos , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Transcriptoma , Vitis/genética , Sequência de Aminoácidos , Ordem dos Genes , Filogenia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência , Vitis/classificação
3.
Hortic Res ; 7(1): 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528704

RESUMO

Vitis riparia, a critically important Native American grapevine species, is used globally in rootstock and scion breeding and contributed to the recovery of the French wine industry during the mid-19th century phylloxera epidemic. This species has abiotic and biotic stress tolerance and the largest natural geographic distribution of the North American grapevine species. Here we report an Illumina short-read 369X coverage, draft de novo heterozygous genome sequence of V. riparia Michx. 'Manitoba 37' with the size of ~495 Mb for 69,616 scaffolds and a N50 length of 518,740 bp. Using RNAseq data, 40,019 coding sequences were predicted and annotated. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models found 96% of the complete BUSCOs in this assembly. The assembly continuity and completeness were further validated using V. riparia ESTs, BACs, and three de novo transcriptome assemblies of three different V. riparia genotypes resulting in >98% of respective sequences/transcripts mapping with this assembly. Alignment of the V. riparia assembly and predicted CDS with the latest V. vinifera 'PN40024' CDS and genome assembly showed 99% CDS alignment and a high degree of synteny. An analysis of plant transcription factors indicates a high degree of homology with the V. vinifera transcription factors. QTL mapping to V. riparia 'Manitoba 37' and V. vinifera PN40024 has identified genetic relationships to phenotypic variation between species. This assembly provides reference sequences, gene models for marker development and understanding V. riparia's genetic contributions in grape breeding and research.

4.
Plants (Basel) ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936615

RESUMO

Tamarix spp. (saltcedar) were introduced from Asia to the southern United States as windbreak and ornamental plants and have spread into natural areas. This study determined differential gene expression responses to water deficit (WD) in seedlings of T. chinensis and T. ramosissima from established invasive stands in New Mexico and Montana, respectively. A reference de novo transcriptome was developed using RNA sequences from WD and well-watered samples. Blast2GO analysis of the resulting 271,872 transcripts yielded 89,389 homologs. The reference Tamarix (Tamaricaceae, Carophyllales order) transcriptome showed homology with 14,247 predicted genes of the Beta vulgaris subsp. vulgaris (Amaranthaceae, Carophyllales order) genome assembly. T. ramosissima took longer to show water stress symptoms than T. chinensis. There were 2068 and 669 differentially expressed genes (DEG) in T. chinensis and T. ramosissima, respectively; 332 were DEG in common between the two species. Network analysis showed large biological process networks of similar gene content for each of the species under water deficit. Two distinct molecular function gene ontology networks (binding and transcription factor-related) encompassing multiple up-regulated transcription factors (MYB, NAC, and WRKY) and a cellular components network containing many down-regulated photosynthesis-related genes were identified in T. chinensis, in contrast to one small molecular function network in T. ramosissima.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33008833

RESUMO

Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.


Assuntos
Neoplasias da Mama/genética , Evolução Molecular , Genômica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Inibidores da Aromatase/farmacologia , Análise Mutacional de DNA , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Fosfatidilinositol 3-Quinases/genética , Filogenia , Fatores de Transcrição SOXB1 , Transdução de Sinais/genética , Transcriptoma , Fator Trefoil-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA