Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Neurosci Res ; 99(8): 1908-1921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33217775

RESUMO

Adolescent alcohol drinking is widely recognized as a significant public health problem, and evidence is accumulating that sufficient levels of consumption during this critical period of brain development have an enduring impact on neural and behavioral function. Recent studies have indicated that adolescent intermittent ethanol (AIE) exposure alters astrocyte function, astrocyte-neuronal interactions, and related synaptic regulation and activity. However, few of those studies have included female animals, and a broader assessment of AIE effects on the proteins mediating astrocyte-mediated glutamate dynamics and synaptic function is needed. We measured synaptic membrane expression of several such proteins in the dorsal and ventral regions of the hippocampal formation (DH, VH) from male and female rats exposed to AIE or adolescent intermittent water. In the DH, AIE caused elevated expression of glutamate transporter 1 (GLT-1) in both males and females, elevated postsynaptic density 95 expression in females only, and diminished NMDA receptor subunit 2A expression in males only. AIE and sex interactively altered ephrin receptor A4 (EphA4) expression in the DH. In the VH, AIE elevated expression of the cystine/glutamate antiporter and the glutamate aspartate transporter 1 (GLAST) in males only. Compared to males, female animals expressed lower levels of GLT-1 in the DH and greater levels of ephrin receptor B6 (EphB6) in the VH, in the absence of AIE effects. These results support the growing literature indicating that adolescent alcohol exposure produces long-lasting effects on astrocyte function and astrocyte-neuronal interactions. The sex and subregion specificity of these effects have mechanistic implications for our understanding of AIE effects generally.


Assuntos
Astrócitos/metabolismo , Etanol/administração & dosagem , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Humanos , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB6/metabolismo
2.
Alcohol Clin Exp Res ; 43(9): 1806-1822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335972

RESUMO

The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.


Assuntos
Comportamento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etanol/efeitos adversos , Consumo de Álcool por Menores , Animais , Humanos , Neuroimunomodulação/efeitos dos fármacos
3.
Alcohol Clin Exp Res ; 42(4): 706-717, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29336496

RESUMO

BACKGROUND: Adolescent intermittent ethanol (AIE) exposure produces persistent impairments in cholinergic and epigenetic signaling and alters markers of synapses in the hippocampal formation, effects that are thought to drive hippocampal dysfunction in adult rodents. Donepezil (Aricept), a cholinesterase inhibitor, is used clinically to ameliorate memory-related cognitive deficits. Given that donepezil also prevents morphological impairment in preclinical models of neuropsychiatric disorders, we investigated the ability of donepezil to reverse morphological and epigenetic adaptations in the hippocampus of adult rats exposed to AIE. Because of the known relationship between dendritic spine density and morphology with the fragile X mental retardation 1 (Fmr1) gene, we also assessed Fmr1 expression and its epigenetic regulation in hippocampus after AIE and donepezil pretreatment. METHODS: Adolescent rats were administered intermittent ethanol for 16 days starting on postnatal day 30. Rats were treated with donepezil (2.5 mg/kg) once a day for 4 days starting 20 days after the completion of AIE exposure. Brains were dissected out after the fourth donepezil dose, and spine analysis was completed in dentate gyrus granule neurons. A separate cohort of rats, treated identically, was used for molecular studies. RESULTS: AIE exposure significantly reduced dendritic spine density and altered morphological characteristics of subclasses of dendritic spines. AIE exposure also increased mRNA levels and H3-K27 acetylation occupancy of the Fmr1 gene in hippocampus. Treatment of AIE-exposed adult rats with donepezil reversed both the dendritic spine adaptations and epigenetic modifications and expression of Fmr1. CONCLUSIONS: These findings indicate that AIE produces long-lasting decreases in dendritic spine density and changes in Fmr1 gene expression in the hippocampal formation, suggesting morphological and epigenetic mechanisms underlying previously reported behavioral deficits after AIE. The reversal of these effects by subchronic, post-AIE donepezil treatment indicates that these AIE effects can be reversed by up-regulating cholinergic function.


Assuntos
Envelhecimento/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Donepezila/farmacologia , Etanol/antagonistas & inibidores , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/metabolismo , Acetilação , Animais , Epigênese Genética/efeitos dos fármacos , Etanol/farmacologia , Masculino , Ratos
4.
Alcohol Clin Exp Res ; 42(11): 2144-2159, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102762

RESUMO

BACKGROUND: Evidence supports a role for the circadian system in alcohol use disorders, but the impact of adolescent alcohol exposure on circadian timing later in life is unknown. Acute ethanol (EtOH) attenuates circadian photic phase-resetting in adult, but not adolescent, rodents. However, nearly all studies have focused on males and it is unknown whether this adolescent-typical insensitivity to EtOH persists into adulthood after adolescent drinking. METHODS: Circadian activity was monitored in C57BL/6J mice receiving adolescent intermittent EtOH (AIE) exposure (15% EtOH and water every other day throughout adolescence) or water alone followed by 24 days wherein EtOH was not available (washout). Mice then received a challenge dose of EtOH (1.5 g/kg, intraperitoneal) or saline 15 minutes prior to a 30-minute phase-delaying light pulse and then were released into constant darkness (DD). To control for possible phase-shifting by EtOH challenge alone, a separate group of mice underwent AIE exposure (or water-only) and washout and then received an EtOH or saline injection, but did not receive a light pulse prior to DD. RESULTS: Striking sex differences in nearly all measures of circadian photic entrainment were observed during adolescence but AIE effects were subtle and few. Only EtOH-naïve adult male mice showed attenuated photic phase-shifts with EtOH challenge, while all other groups showed normal phase-resetting responses to light. AIE-exposed females showed a persistent delay in activity offset. CONCLUSIONS: Adult male AIE-exposed mice retained adolescent-like insensitivity to EtOH-induced suppression of photic phase-resetting, suggesting AIE-induced "lock-in" of an adolescent behavioral phenotype. Adult AIE-exposed females showed delayed initiation of the rest phase. Our results also indicate that intermittent EtOH drinking has subtle effects on circadian activity in mice during adolescence that differ from previously reported effects on adult males. The observed sex differences in circadian activity, EtOH consumption and preference, and responses to EtOH challenge merit future mechanistic study.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Transtornos Cronobiológicos/induzido quimicamente , Transtornos Cronobiológicos/psicologia , Etanol/toxicidade , Envelhecimento , Consumo de Bebidas Alcoólicas/psicologia , Animais , Escuridão , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Estimulação Luminosa , Caracteres Sexuais
5.
Alcohol Clin Exp Res ; 41(1): 187-196, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27997028

RESUMO

BACKGROUND: Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus, a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol [EtOH]) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether EtOH has similar effects on circadian regulation during adolescence. METHODS: General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12-hour light, 12-hour dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of EtOH (1.5 g/kg, i.p.) or equal volume saline 15 minutes prior to a 30-minute light pulse at Zeitgeber Time 14 (2 hours into the dark phase) and then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age-group received injections but no light pulse prior to DD. RESULTS: While adults showed the expected decrease in photic phase-delays induced by acute EtOH, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. CONCLUSIONS: Collectively, our results indicate that adolescent mice are less sensitive to the effect of EtOH on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Etanol/administração & dosagem , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa/métodos , Fatores Etários , Animais , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia
6.
Alcohol Clin Exp Res ; 41(5): 1012-1023, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28324915

RESUMO

BACKGROUND: Many transgender college students struggle with identity formation and other emotional, social, and developmental challenges associated with emerging adulthood. A potential maladaptive coping strategy employed by such students is heavy drinking. Prior literature has suggested greater consumption and negative alcohol-related consequences (ARCs) in transgender students compared with their cisgender peers, but little is known about their differing experiences with alcohol-related blackouts (ARBs). We examined the level of alcohol consumption, the frequency of ARBs and other ARCs, and motivations for drinking reported by the largest sample of transgender college students to date. METHODS: A Web survey from an alcohol-prevention program, AlcoholEdu for College™, assessed student demographics and drinking-related behaviors, experiences, and motivations of newly matriculating first-year college students. A self-reported drinking calendar was used to examine each of the following measures over the previous 14 days: number of drinking days, total number of drinks, and maximum number of drinks on any single day. A 7-point Likert scale was used to measure ARCs, ARBs, and drinking motivations. Transgender students of both sexes were compared with their cisgender peers. RESULTS: A total of 989 of 422,906 students (0.2%) identified as transgender. Over a 14-day period, transgender compared with cisgender students were more likely to consume alcohol over more days, more total drinks, and a greater number of maximum drinks on a single day. Transgender students (36%) were more likely to report an ARB than cisgender students (25%) as well as more negative academic, confrontation-related, social, and sexual ARCs. Transgender respondents more often cited stress reduction, social anxiety, self-esteem issues, and the inherent properties of alcohol as motivations for drinking. For nearly all measures, higher values were yielded by male-to-female than female-to-male transgender students. CONCLUSIONS: Transgender compared with cisgender first-year students engage in higher-risk drinking patterns and experience more ARBs and other negative ARCs. Broad institutional efforts are required to address the unique circumstances of transgender men and women and to reduce negative ARCs in college students, regardless of their sex or gender identity.


Assuntos
Consumo de Álcool na Faculdade/psicologia , Intoxicação Alcoólica/psicologia , Motivação , Autorrelato , Estudantes/psicologia , Pessoas Transgênero/psicologia , Adolescente , Intoxicação Alcoólica/diagnóstico , Intoxicação Alcoólica/epidemiologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Universidades , Adulto Jovem
7.
Alcohol Clin Exp Res ; 39(12): 2403-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26537975

RESUMO

BACKGROUND: Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS: We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS: Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS: Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.


Assuntos
Etanol/toxicidade , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Trombospondinas/biossíntese , Fatores Etários , Animais , Etanol/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/patologia
8.
Alcohol Clin Exp Res ; 37(7): 1154-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23413887

RESUMO

BACKGROUND: In recent years, it has become clear that acute ethanol (EtOH) affects various neurobiological and behavioral functions differently in adolescent animals than in adults. However, less is known about the long-term neural consequences of chronic EtOH exposure during adolescence, and most importantly whether adolescence represents a developmental period of enhanced vulnerability to such effects. METHODS: We made whole-cell recordings of GABAA receptor-mediated tonic inhibitory currents from dentate gyrus granule cells (DGGCs) in hippocampal slices from adult rats that had been treated with chronic intermittent ethanol (CIE) or saline during adolescence, young adulthood, or adulthood. RESULTS: CIE reduced baseline tonic current amplitude in DGGCs from animals pretreated with EtOH during adolescence, but not in GCs from those pretreated with EtOH during young adulthood or adulthood. Similarly, the enhancement of tonic currents by acute EtOH exposure ex vivo was increased in GCs from animals pretreated with EtOH during adolescence, but not in those from animals pretreated during either of the other 2 developmental periods. CONCLUSIONS: These findings underscore our recent report that CIE during adolescence results in enduring alterations in tonic current and its acute EtOH sensitivity and establish that adolescence is a developmental period during which the hippocampal formation is distinctively vulnerable to long-term alteration by chronic EtOH exposure.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Giro Denteado/fisiologia , Etanol/toxicidade , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Receptores de GABA-A/fisiologia , Fatores Etários , Animais , Giro Denteado/efeitos dos fármacos , Etanol/administração & dosagem , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
Alcohol Clin Exp Res ; 37(12): 2074-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23889304

RESUMO

BACKGROUND: Chronic alcohol use, especially exposure to alcohol during adolescence or young adulthood, is closely associated with cognitive deficits that may persist into adulthood. Therefore, it is essential to identify possible neuronal mechanisms underlying the observed deficits in learning and memory. Hippocampal interneurons play a pivotal role in regulating hippocampus-dependent learning and memory by exerting strong inhibition on excitatory pyramidal cells. The function of these interneurons is regulated not only by synaptic inputs from other types of neurons but is also precisely governed by their own intrinsic membrane ionic conductances. The voltage-gated A-type potassium current (IA ) regulates the intrinsic membrane properties of neurons, and disruption of IA is responsible for many neuropathological processes including learning and memory deficits. Thus, it represents a previously unexplored cellular mechanism whereby chronic ethanol (EtOH) may alter hippocampal memory-related functioning. METHODS: Using whole-cell electrophysiological recording methods, we investigated the enduring effects of chronic intermittent ethanol (CIE) exposure during adolescence or adulthood on IA in rat CA1 interneurons. RESULTS: We found that the mean peak amplitude of IA was significantly reduced after CIE in either adolescence or adulthood, but IA density was attenuated after CIE in adolescence but not after CIE in adulthood. In addition, the voltage-dependent steady-state activation and inactivation of IA were altered in interneurons after CIE. CONCLUSIONS: These findings suggest that CIE can cause long-term changes in IA channels in interneurons and thus may alter their inhibitory influences on memory-related local hippocampal circuits, which could be, in turn, responsible for learning and memory impairments observed after chronic EtOH exposure.


Assuntos
Região CA1 Hipocampal/fisiologia , Etanol/administração & dosagem , Interneurônios/fisiologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Fatores Etários , Animais , Condutividade Elétrica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
10.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408257

RESUMO

Heavy ethanol consumption during adolescence has been linked to neuroimmune response dysregulation and cognitive deficits in the developing adolescent brain. During adolescence, the brain is particularly susceptible to the pharmacological effects of ethanol that are induced by acute and chronic bouts of exposure. Numerous preclinical rodent model studies have used different ethanol administration techniques, such as intragastric gavage, self-administration, vapor, intraperitoneal, and free access, and while most models indicated proinflammatory neuroimmune responses in the adolescent brain, there are various factors that appear to influence this observation. This review synthesizes the most recent findings of the effects of adolescent alcohol use on toll-like receptors, cytokines, and chemokines, as well as the activation of astrocytes and microglia with an emphasis on differences associated with the duration of ethanol exposure (acute vs. chronic), the amount of exposure (e.g., dose or blood ethanol concentrations), sex differences, and the timing of the neuroimmune observation (immediate vs. persistent). Finally, this review discusses new therapeutics and interventions that may ameliorate the dysregulation of neuroimmune maladaptations after ethanol exposure.


Assuntos
Encéfalo , Etanol , Feminino , Masculino , Animais , Etanol/farmacologia , Receptores Toll-Like , Citocinas/farmacologia , Microglia
11.
Alcohol Clin Exp Res ; 36(2): 279-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22014205

RESUMO

BACKGROUND: Alcohol drinking by adolescents is a major public health concern. Adolescents tend to drink in a chronic, intermittent, that is, "binge," pattern, and such patterns of ethanol exposure are associated with increased risk of neurotoxicity and the development of alcohol use disorders (Crews et al., 2000; Hunt, 1993). Both adolescent humans and rats are more sensitive to acute ethanol-induced memory impairment than adults (Acheson et al., 1998; Markwiese et al., 1998). Furthermore, in rats, chronic intermittent ethanol (CIE) exposure during adolescence produces a long-lasting, perhaps permanent, maintenance of the adolescent high sensitivity to ethanol's amnestic effects (White et al., 2000a). We have previously shown that acute ethanol increases tonic inhibitory current mediated by extrasynaptic GABA(A) receptors more efficaciously in dentate granule cells (DGCs) from adolescent than adult rats (Fleming et al., 2007). In this study, we determined if CIE during adolescence produced long-lasting changes in this tonic current. METHODS: Adolescent rats were subjected to a CIE exposure regimen and allowed to mature to full adulthood. Whole-cell voltage-clamp measurements of tonic inhibitory current and mean phasic current were made in vitro in hippocampal brain slices. RESULTS: CIE exposure during adolescence increased the ethanol sensitivity of tonic inhibitory current mediated by extrasynaptic GABA(A) receptors and decreased the ethanol sensitivity of phasic, synaptic GABA(A) receptor-mediated current in adult DGCs. CONCLUSIONS: CIE exposure during adolescence produces long-lasting changes in the function and ethanol sensitivity of extrasynaptic GABA(A) receptors in DGCs. These changes appear to "lock-in" and maintain the high adolescent sensitivity to ethanol in these cells. Furthermore, greater ethanol enhancement of tonic inhibition in the hippocampal formation after CIE is consistent with the greater sensitivity to ethanol-induced memory impairment after adolescent CIE. This finding represents the first demonstration of a long-term, memory-related cellular effect of CIE during adolescence, and the "lock-in" of adolescent ethanol sensitivity that these results suggest could represent a conceptual step forward in understanding the vulnerability of the adolescent brain to alcohol.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Animais , Interpretação Estatística de Dados , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos , Técnicas In Vitro , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos
12.
Alcohol ; 100: 31-39, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182671

RESUMO

Adolescent alcohol abuse is a significant public health concern, with approximately 4.3 million U.S. adolescents reporting monthly binge drinking. Excessive ethanol consumption during adolescence has been linked to dysregulation of the neuroimmune system, particularly in the hippocampus. Because there are sex differences in both neuroimmune responses and ethanol's pharmacologic actions, this study tested whether there were disparate effects based on sex in glial cells and neurodegeneration in adulthood after the adolescent intermittent ethanol (AIE) model. Male and female adolescent Sprague-Dawley rats underwent AIE. In adulthood, immunohistochemical techniques were utilized to determine the effects of AIE on astrocytes and microglia, and Fluoro-Jade C (FJC) was used to assess neurodegeneration in the hippocampus. AIE exposure significantly increased astrocyte activation in the cornu ammonis 1 (CA1), CA2/3, and dentate gyrus (DG) in both male and female rats with no discernible sex differences in immunoreactivity. Likewise, the number of GFAP + cells was significantly increased by AIE across the hippocampus. In our microglial assessment, AIE only led to increased Iba1 immunoreactivity in the CA1 but not CA2/3 or DG regions. However, the number of Iba1+ cells was increased by AIE in both the CA1 and DG subregions. In the DG, the ethanol effect was observed in both sexes, but in the CA1, AIE-induced increased Iba1 cells were only observed in females. In regard to neurodegeneration, there were no persisting AIE effects on FJC + cells. These findings indicate that AIE alters hippocampal glial cells in adulthood, in the absence of active neurodegeneration. However, while AIE induced long-term elevation of astroglial measures in both males and females, persisting AIE-induced microglial activation was more sparse and sex-dependent. While the majority of these findings suggest that AIE has similar effects on glial morphology and number between males and females, additional work should determine whether there are molecular differences as well as innate sex differences in glial interaction with AIE's influence on glial functions in behavior.


Assuntos
Etanol , Hipocampo , Animais , Etanol/farmacologia , Feminino , Masculino , Neurogênese , Neuroglia , Ratos , Ratos Sprague-Dawley
13.
Neuroscience ; 506: 68-79, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343720

RESUMO

In the United States, approximately 90% of alcohol consumed by adolescents is binge drinking. Binge-like ethanol exposure during adolescence promotes dysregulation of neurotrophic responses and neurogenesis in the hippocampus. These effects include changes in proliferation, regulation, differentiation, and maturation of neurons, and there is indication that such effects may be disproportionate between sexes. This study determined whether sex impacts neurotrophic responses and neurogenesis in adulthood after adolescent intermittent ethanol (AIE) exposure. To determine this, adolescent rats underwent AIE with ethanol (5 g/kg). In adulthood, animals were euthanized, and immunohistochemical techniques and ELISAs were utilized to determine AIE effects on sex-specific neurogenesis factors and neurotrophic markers, respectively. AIE exposure led to a significant decrease in neurogenesis in the dentate gyrus of the hippocampal formation indicated by reductions in the numbers of DCX+, SOX2+ and Ki-67+ cells in male and female AIE-exposed rats. Additionally, AIE increased markers for the pro-inflammatory cytokines, TNF-α and IL-1ß, in the hippocampus into adulthood in male AIE-exposed rats only. No significant AIE-induced differences were observed in the anti-inflammatory cytokines, IL-10 and TGF-ß, nor in the neurotrophic factors BDNF and GDNF. Altogether, our findings indicate that although AIE did not have a persistent effect on hippocampal neurotrophic levels, there was still a reduction in neurogenesis. The neurogenic impairment was not sex specific, but the neurogenic deficits in males may be attributed to an increase in pro-inflammatory cytokine expression. A persistent impairment in neurogenesis may have an impact on both behavioral maladaptations and neurodegeneration in adulthood.


Assuntos
Etanol , Feminino , Masculino , Ratos , Animais , Etanol/toxicidade
14.
Front Behav Neurosci ; 16: 954319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082421

RESUMO

Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.

15.
Int Rev Neurobiol ; 160: 305-340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696877

RESUMO

Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Etanol/toxicidade , Feminino , Masculino , Roedores , Fatores Sexuais
16.
J Pharmacol Exp Ther ; 335(1): 51-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660126

RESUMO

Ethanol (EtOH) promotes GABAergic synaptic transmission in the central nervous system. We have shown that EtOH enhances the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents less powerfully in hippocampal CA1 pyramidal neurons from adolescent animals compared with those from adults. However, we have also shown that EtOH promotes the firing of hippocampal interneurons, located in stratum lacunosum moleculare (SLM), from adolescent animals more potently than in those from adults. Thus the latter finding would seem to be inconsistent with the former. To understand this apparent inconsistency, we have now assessed the effects of EtOH on a different subpopulation of hippocampal interneurons, those with somata located in the stratum oriens (SO). We found that EtOH-induced enhancement of the frequency of spontaneous action potentials (sAPs) was less in interneurons from adolescent rats compared with those from adults. In addition, EtOH-induced reduction of the afterhyperpolarization decay time constant (τ(slow)) was less pronounced in interneurons from adolescent rats, as was the EtOH-induced increase in the amplitude of the hyperpolarization-activated cation current, I(h). The effect of EtOH on sAP firing frequency was blocked by application of the I(h) antagonist 4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride (ZD7288). These results indicate that although EtOH promotes the firing of hippocampal interneurons, through promotion of I(h), the developmental expression of this effect differs between interneurons with somata located in the SO and SLM.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Eletrofisiologia , Hipocampo/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
17.
J Pharmacol Exp Ther ; 335(2): 294-301, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20668056

RESUMO

Adolescence is a well defined developmental period during which marijuana use is common. However, little is known about the response to marijuana in adolescents compared with adults. We have shown previously that adolescent rats are more impaired than adults by Δ(9)-tetrahydrocannabinol (THC), the main psychoactive compound in marijuana, in a spatial learning task, but the mechanism responsible for this differential impairment is not understood. We determined the role of THC tolerance and cannabinoid receptor type 1 (CB1) regulation in THC-induced spatial learning impairment in adolescent and adult rats. We measured the development of tolerance to THC-induced learning impairment in adolescent (postnatal days 30-35) and adult (postnatal days 70-75) rats. We pretreated them for 5 days with 10 mg/kg THC, and then evaluated the effects of vehicle or THC treatment on learning during training in the Morris water maze. We also determined CB1 number and functional coupling in the hippocampus of adolescents and adults. Finally, we measured the time course of hippocampal CB1 desensitization in adolescents and adults during treatment with 10 mg/kg THC or vehicle. Our results indicate that adults, but not adolescents, become tolerant to the effects of THC during water maze training after 5 days of pretreatment. CB1s in adolescent hippocampus are less functionally coupled to G proteins and desensitize more slowly in response to THC treatment than those of adults. THC may impair learning in adolescents more than in adults because of delayed activation of cellular homeostatic adaptive mechanisms underlying cannabinoid tolerance in the hippocampus.


Assuntos
Envelhecimento/efeitos dos fármacos , Dronabinol/efeitos adversos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Envelhecimento/metabolismo , Animais , Tolerância a Medicamentos , Imunofluorescência , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ligação Proteica , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Comportamento Espacial/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32825665

RESUMO

Most people who smoke and develop cancer are unable to quit smoking. To address this, many cancer centers have now opened smoking cessation programs specifically designed to help cancer patients to quit. An important question has now emerged-what is the most effective approach for engaging smokers within a cancer center in these smoking cessation programs? We report outcomes from a retrospective observational study comparing three referral methods-traditional referral, best practice advisory (BPA), and direct outreach-on utilization of the Duke Cancer Center Smoking Cessation Program. We found that program utilization rate was higher for direct outreach (5.4%) than traditional referral (0.8%), p < 0.001, and BPA (0.2%); p < 0.001. Program utilization was 6.4% for all methods combined. Inferring a causal relationship between referral method and program utilization was not possible because the study did not use a randomized design. Innovation is needed to generate higher utilization rates for cancer center smoking cessation programs.


Assuntos
Neoplasias , Encaminhamento e Consulta , Abandono do Hábito de Fumar , Feminino , Humanos , Masculino , Medicare , Pacientes , Estudos Retrospectivos , Fumar/terapia , Estados Unidos
19.
Psychopharmacology (Berl) ; 237(9): 2601-2611, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32607619

RESUMO

RATIONALE AND OBJECTIVES: Binge-like alcohol consumption during adolescence associates with several deleterious consequences during adulthood including an increased risk for developing alcohol use disorder (AUD) and other addictions. Replicated preclinical data has indicated that adolescent exposure to binge-like levels of alcohol results in a reduction of choline acetyltransferase (ChAT) and an upregulation in the α7 nicotinic receptor (α7). From this information, we hypothesized that the α7 plays a critical role in mediating the effects of adolescent alcohol exposure. METHODS: Male and female P rats were injected with the α7 agonist AR-R17779 (AR) once during 6 time points between post-natal days (PND) 29-37. Separate groups were injected with the α7 negative allosteric modulator (NAM) dehydronorketamine (DHNK) 2 h before administration of 4 g/kg EtOH (14 total exposures) during PND 28-48. On PND 75, all rats were given access to water and ethanol (15 and 30%) for 6 consecutive weeks (acquisition). All rats were then deprived of EtOH for 2 weeks and then, alcohol was returned (relapse). RESULTS: Administration of AR during adolescence significantly increased acquisition of alcohol consumption during adulthood and prolonged relapse drinking in P rats. In contrast, administration of DHNK prior to binge-like EtOH exposure during adolescence prevented the increase in alcohol consumption observed during acquisition of alcohol consumption and the enhancement of relapse drinking observed during adulthood. DISCUSSION: The data indicate that α7 mediates the effects of alcohol during adolescence. The data also indicate that α7 NAMs are potential prophylactic agents to reduce the deleterious effects of adolescent alcohol abuse.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Etanol/efeitos adversos , Compostos de Espiro/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Fatores Etários , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/genética , Comportamento Aditivo/psicologia , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Etanol/administração & dosagem , Feminino , Masculino , Ratos , Ratos Transgênicos , Compostos de Espiro/farmacologia , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
20.
Neural Regen Res ; 15(8): 1496-1501, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31997814

RESUMO

Adolescent alcohol abuse is a substantive public health problem that has been the subject of intensive study in recent years. Despite reports of a wide range of effects of adolescent intermittent ethanol (AIE) exposure on brain and behavior, little is known about the mechanisms that may underlie those effects, and even less about treatments that might reverse them. Recent studies from our laboratory have indicated that AIE produced enduring changes in astrocyte function and synaptic activity in the hippocampal formation, suggesting the possibility of an alteration in astrocyte-neuronal connectivity and function. We utilized astrocyte-specific, membrane restricted viral labeling paired with immunohistochemistry to perform confocal single cell astrocyte imaging, three-dimensional reconstruction, and quantification of astrocyte morphology in hippocampal area CA1 from adult rats after AIE. Additionally, we assessed the colocalization of astrocyte plasma membrane labeling with immunoreactivity for AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1, an AMPA receptor subunit and established neuronal marker of excitatory synapses, as a metric of astrocyte-synapse proximity. AIE significantly reduced the colocalization of the astrocyte plasma membrane with synaptic marker puncta in adulthood. This is striking in that it suggests not only an alteration of the physical association of astrocytes with synapses by AIE, but one that lasts into adulthood - well after the termination of alcohol exposure. Perhaps even more notable, the AIE-induced reduction of astrocyte-synapse interaction was reversed by sub-chronic treatment with the clinically used agent, gabapentin (Neurontin), in adulthood. This suggests that a medication in common clinical use may have the potential to reverse some of the enduring effects of adolescent alcohol exposure on brain function. All animal experiments conducted were approved by the Duke University Institutional Animal Care and Use Committee (Protocol Registry Number A159-18-07) on July 27, 2018.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA