Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Neurosci ; 60(1): 3706-3718, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38716689

RESUMO

The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.


Assuntos
Biperideno , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Biperideno/farmacologia , Método Duplo-Cego , Aprendizagem/fisiologia , Aprendizagem/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Estudos Cross-Over , Atenção/efeitos dos fármacos , Atenção/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ritmo beta/efeitos dos fármacos , Ritmo beta/fisiologia , Dedos/fisiologia
2.
Cereb Cortex ; 33(23): 11235-11246, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37804246

RESUMO

Prospective memory (PM) impairment is among the most frequent memory complaints, yet little is known about the underlying neural mechanisms. PM for a planned intention may be achieved through strategic monitoring of the environment for cues, involving ongoing attentional processes, or through spontaneous retrieval. We hypothesized that parietal spectral power modulation accompanies prospectively encoded intention retrieval, irrespective of PM retrieval approach. A cognitively engaging arithmetic-based ongoing task (OGT) was employed to encourage spontaneous retrieval, with a focal, internally generated PM cue to eliminate OGT/PM trial differentiation based on perceptual or conceptual PM cue features. Two PM repetition frequencies were used to vary the extent of strategic monitoring. We observed a transient parietal alpha/beta spectral power reduction directly preceding the response, which was distinguishable on a single trial basis, as revealed by an OGT/PM trial classification rate exceeding 70% using linear discriminant analysis. The alpha/beta idling rhythm reflects cortical inhibition. A disengagement of task-relevant neural assemblies from this rhythm, reflected in alpha/beta power reduction, is deemed to increase information content, facilitate information integration, and enable engagement of neural assemblies in task-related cortical networks. The observed power reduction is consistent with the Dual Pathways model, where PM strategies converge at the PM retrieval stage.


Assuntos
Memória Episódica , Humanos , Sinais (Psicologia) , Atenção/fisiologia , Transtornos da Memória , Intenção
3.
Cerebellum ; 22(6): 1152-1165, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36239839

RESUMO

Cerebellum (CB) and primary motor cortex (M1) have been associated with motor learning, with different putative roles. Modulation of task performance through application of transcranial direct current stimulation (TDCS) to brain structures provides causal evidence for their engagement in the task. Studies evaluating and comparing TDCS to these structures have provided conflicting results, however, likely due to varying paradigms and stimulation parameters. Here we applied TDCS to CB and M1 within the same experimental design, to enable direct comparison of their roles in motor sequence learning. We examined the effects of anodal TDCS during motor sequence learning in 60 healthy participants, randomly allocated to CB-TDCS, M1-TDCS, or Sham stimulation groups during a serial reaction time task. Key to the design was an equal number of repeated and random sequences. Reaction times (RTs) to implicitly learned and random sequences were compared between groups using ANOVAs and post hoc t-tests. A speed-accuracy trade-off was excluded by analogous analysis of accuracy scores. An interaction was observed between whether responses were to learned or random sequences and the stimulation group. Post hoc analyses revealed a preferential slowing of RTs to implicitly learned sequences in the group receiving CB-TDCS. Our findings provide evidence that CB function can be modulated through transcranial application of a weak electrical current, that the CB and M1 cortex perform separable functions in the task, and that the CB plays a specific role in motor sequence learning during implicit motor sequence learning.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Cerebelo/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Tempo de Reação/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Hum Brain Mapp ; 43(15): 4791-4799, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792001

RESUMO

The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We investigated whether VIM stimulation has an impact on motor sequence learning and hypothesized that stimulation effects depend on the laterality of electrode location. Twenty patients (age: 38-81 years; 12 female) with VIM electrodes implanted to treat essential tremor (ET) successfully performed a serial reaction time task, varying whether the stimuli followed a repeating pattern or were selected at random, during which VIM-DBS was either on or off. Analyses of variance were applied to evaluate motor sequence learning performance according to reaction times (RTs) and accuracy. An interaction was observed between whether the sequence was repeated or random and whether VIM-DBS was on or off (F[1,18] = 7.89, p = .012). Motor sequence learning, reflected by reduced RTs for repeated sequences, was greater with DBS on than off (T[19] = 2.34, p = .031). Stimulation location correlated with the degree of motor learning, with greater motor learning when stimulation targeted the lateral VIM (n = 23, ρ = 0.46; p = .027). These results demonstrate the beneficial effects of VIM-DBS on motor sequence learning in ET patients, particularly with lateral VIM electrode location, and provide evidence for a role for the VIM in motor sequence learning.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Adulto , Idoso , Idoso de 80 Anos ou mais , Gânglios da Base , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Feminino , Humanos , Pessoa de Meia-Idade , Tálamo/fisiologia , Resultado do Tratamento , Tremor/etiologia , Núcleos Ventrais do Tálamo
5.
Conscious Cogn ; 69: 113-132, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30763808

RESUMO

Sudden comprehension-or insight-during problem-solving can enhance learning, but the underlying neural processes are largely unknown. We investigated neural correlates of learning from sudden comprehension using functional magnetic resonance imaging and a verbal problem-solving task. Solutions and "solutions" to solvable and unsolvable verbal problems, respectively, were presented to induce sudden comprehension or continued incomprehension. We found activations of the hippocampus, medial prefrontal cortex (mPFC), amygdala, and striatum during sudden comprehension. Notably, however, mPFC and temporo-parietal neocortical structures rather than the hippocampus were associated with later learning of suddenly comprehended solutions. Moreover, difficult compared to easy sudden comprehension elicited midbrain activations and was associated with successful learning, pointing to learning via intrinsic reward. Sudden comprehension of novel semantic associations may constitute a special case of long-term memory formation primarily mediated by the mPFC, expanding our knowledge of its role in prior-knowledge-dependent memory.


Assuntos
Associação , Compreensão/fisiologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Semântica , Adulto Jovem
6.
J Neuroeng Rehabil ; 16(1): 72, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186029

RESUMO

BACKGROUND: Central drop foot is a common problem in patients with stroke or multiple sclerosis (MS). For decades, it has been treated with orthotic devices, keeping the ankle in a fixed position. It has been shown recently that semi-implantable functional electrical stimulation (siFES) of the peroneal nerve can lead to a greater gait velocity increase than orthotic devices immediately after being switched on. Little is known, however, about long-term outcomes over 12 months, and the relationship between quality of life (QoL) and gait speed using siFES has never been reported applying a validated tool. We provide here a report of short (3 months) and long-term (12 months) outcomes for gait speed and QoL. METHODS: Forty-five consecutive patients (91% chronic stroke, 9% MS) with central drop foot received siFES (Actigait®). A 10 m walking test was carried out on day 1 of stimulation (T1), in stimulation ON and OFF conditions, and repeated after 3 (T2) and 12 (T3) months. A 36-item Short Form questionnaire was applied at all three time points. RESULTS: We found a main effect of stimulation on both maximum (p < 0.001) and comfortable gait velocity (p < 0.001) and a main effect of time (p = 0.015) only on maximum gait velocity. There were no significant interactions. Mean maximum gait velocity across the three assessment time points was 0.13 m/s greater with stimulation ON than OFF, and mean comfortable gait velocity was 0.083 m/s faster with stimulation ON than OFF. The increase in maximum gait velocity over time was 0.096 m/s, with post hoc testing revealing a significant increase from T1 to T2 (p = 0.012), which was maintained but not significantly further increased at T3. QoL scores showed a main effect of time (p < 0.001), with post hoc testing revealing an increase from T1 to T2 (p < 0.001), which was maintained at T3 (p < 0.001). Finally, overall absolute QoL scores correlated with the absolute maximum and comfortable gait speeds at T2 and T3, and the increase in overall QoL scores correlated with the increase in comfortable gait velocity from T1 to T3. Pain was reduced at T2 (p < 0.001) and was independent of gait speed but correlated with overall QoL (p < 0.001). CONCLUSIONS: Peroneal siFES increased maximal and comfortable gait velocity and QoL, with the greatest increase in both over the first three months, which was maintained at one year, suggesting that 3 months is an adequate follow-up time. Pain after 3 months correlated with QoL and was independent of gait velocity, suggesting pain as an independent outcome measure in siFES for drop foot.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Transtornos Neurológicos da Marcha/terapia , Adulto , Eletrodos Implantados , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/fisiopatologia , Qualidade de Vida , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
7.
Hum Brain Mapp ; 38(8): 4064-4077, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28513104

RESUMO

A salience network (SN) anchored in the anterior insula (AI) and dorsal anterior cingulate cortex (dACC) plays a key role in switching between brain networks during salience detection and attention regulation. Previous fMRI studies have associated expectancy behaviors and SN activation with novelty seeking (NS) and reward dependence (RD) personality traits. To address the question of how functional connectivity (FC) in the SN is modulated by internal (expectancy-related) salience assignment and different personality traits, 68 healthy participants performed a salience expectancy task using functional magnetic resonance imaging, and psychophysiological interaction analysis (PPI) was conducted to determine salience-related connectivity changes during these anticipation periods. Correlation was then evaluated between PPI and personality traits, assessed using the temperament and character inventory of 32 male participants. During high salience expectancy, SN-seed regions showed reduced FC to visual areas and parts of the default mode network, but increased FC to the central executive network. With increasing NS, participants showed significantly increasing disconnection between right AI and middle cingulate cortex when expecting high-salience pictures as compared to low-salience pictures, while increased RD also predicted decreased right dACC and caudate FC for high salience expectancy. Our findings suggest a direct link between personality traits and internal salience processing mediated by differential network integration of the SN. SN activity and coordination may therefore be moderated by novelty seeking and reward dependency personality traits, which are associated with risk of addiction. Hum Brain Mapp 38:4064-4077, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Comportamento Exploratório/fisiologia , Vias Neurais/fisiologia , Personalidade/fisiologia , Recompensa , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Fatores Sexuais , Adulto Jovem
8.
Int J Neuropsychopharmacol ; 20(11): 909-918, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099972

RESUMO

Background: The increasing use of ketamine as a potential rapid-onset antidepressant necessitates a better understanding of its effects on blood pressure and heart rate, well-known side effects at higher doses. For the subanesthetic dose used for depression, potential predictors of these cardiovascular effects are important factors influencing clinical decisions. Since ketamine influences the sympathetic nervous system, we investigated the impact of autonomic nervous system-related factors on the cardiovascular response: a genetic polymorphism in the norepinephrine transporter and gender effects. Methods: Blood pressure and heart rate were monitored during and following administration of a subanesthetic dose of ketamine or placebo in 68 healthy participants (mean age 26.04 ±5.562 years) in a double-blind, randomized, controlled, parallel-design trial. The influences of baseline blood pressure/heart rate, gender, and of a polymorphism in the norepinephrine transporter gene (NET SLC6A2, rs28386840 [A-3081T]) on blood pressure and heart rate changes were investigated. To quantify changes in blood pressure and heart rate, we calculated the maximum change from baseline (ΔMAX) and the time until maximum change (TΔMAX). Results: Systolic and diastolic blood pressure as well as heart rate increased significantly upon ketamine administration, but without reaching hypertensive levels. During administration, the systolic blood pressure at baseline (TP0Sys) correlated negatively with the time to achieve maximal systolic blood pressure (TΔMAXSys, P<.001). Furthermore, women showed higher maximal diastolic blood pressure change (ΔMAXDia, P<.001) and reached this peak earlier than men (TΔMAXDia, P=.017) at administration. NET rs28386840 [T] carriers reached their maximal systolic blood pressure during ketamine administration significantly earlier than [A] homozygous (TΔMAXSys, P=.030). In a combined regression model, both genetic polymorphism and TP0Sys were significant predictors of TΔMAXSys (P<.0005). Conclusions: Subanesthetic ketamine increased both blood pressure and heart rate without causing hypertensive events. Furthermore, we identified gender and NET rs28386840 genotype as factors that predict increased cardiovascular sequelae of ketamine administration in our young, healthy study population providing a potential basis for establishing monitoring guidelines.


Assuntos
Analgésicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ketamina/farmacologia , Adulto , Análise de Variância , Método Duplo-Cego , Feminino , Seguimentos , Genótipo , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Polimorfismo Genético/genética , Fatores Sexuais , Adulto Jovem
9.
Neuroimage ; 138: 100-108, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27208861

RESUMO

Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Mapeamento Encefálico/métodos , Formação de Conceito/fisiologia , Estimulação Encefálica Profunda/métodos , Núcleo Mediodorsal do Tálamo/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Adulto , Feminino , Humanos , Masculino , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
J Neuroeng Rehabil ; 12: 100, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26577467

RESUMO

BACKGROUND: Gait dysfunction due to lower limb central paralysis, frequently involving drop foot, is a common cause of disability in multiple sclerosis and has been treated with transcutaneous functional electrical stimulation (FES). We provide here the first report of 4-channel semi-implantable FES of the peroneal nerve which has been successfully used for rehabilitation in patients following stroke. METHODS: FES was implemented via a 4-channel semi-implantable closed-loop system (ActiGait(®), ©Ottobock), generating dorsiflexion in drop foot. Walking distance, gait symmetry (temporospatial gait analyses, Vicon Motion Systems(®)), gait velocity (10 m walking test) and quality of life (SF-36 questionnaire) were measured to evaluate the therapeutic benefit of this system in two patients with progressive MS. RESULTS: Walking distance increased from 517 to 1884 m in Patient 1 and from 52 to 506 m in Patient 2. Gait velocity did not change significantly in Patient 1 and increased from 0.6 to 0.8 m/s in Patient 2. Maximum deviations of center of mass from the midline to each side changed significantly after 3 months of stimulation compared to baseline, decreasing from 15 to 12 mm in Patient 1 and from 47 to 37 mm in Patient 2. Both patients experienced reduced pain and fatigue and benefits to quality of life. Adverse events did not occur during the observation period. CONCLUSION: We conclude that implantable 4-channel FES systems are not only feasible but present a promising new alternative for treating central drop foot in MS patients.


Assuntos
Terapia por Estimulação Elétrica/métodos , Esclerose Múltipla Crônica Progressiva/reabilitação , Idoso , Estudos de Viabilidade , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/complicações , Nervo Fibular , Qualidade de Vida , Caminhada/fisiologia
11.
Front Hum Neurosci ; 18: 1358809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505100

RESUMO

Commands in brain-computer interface (BCI) applications often rely on the decoding of event-related potentials (ERP). For instance, the P300 potential is frequently used as a marker of attention to an oddball event. Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. Here we introduce a toolbox that enables ERP-based decoding using the full set of channels, while automatically extracting informative components from relevant channels. The strength of our approach is that it handles sequences of stimuli that encode multiple items using binary classification, such as target vs. nontarget events typically used in ERP-based spellers. We demonstrate examples of application scenarios and evaluate the performance of four openly available datasets: a P300-based matrix speller, a P300-based rapid serial visual presentation (RSVP) speller, a binary BCI based on the N2pc, and a dataset capturing error potentials. We show that our approach achieves performances comparable to those in the original papers, with the advantage that only conventional preprocessing is required by the user, while channel weighting and decoding algorithms are internally performed. Thus, we provide a tool to reliably decode ERPs for BCI use with minimal programming requirements.

12.
Commun Biol ; 7(1): 798, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956172

RESUMO

Ventrointermediate thalamic stimulation (VIM-DBS) modulates oscillatory activity in a cortical network including primary motor cortex, premotor cortex, and parietal cortex. Here we show that, beyond the beneficial effects of VIM-DBS on motor execution, this form of invasive stimulation facilitates production of sequential finger movements that follow a repeated sequence. These results highlight the role of thalamo-cortical activity in motor learning.


Assuntos
Estimulação Encefálica Profunda , Aprendizagem , Córtex Motor , Tálamo , Humanos , Estimulação Encefálica Profunda/métodos , Aprendizagem/fisiologia , Masculino , Adulto , Córtex Motor/fisiologia , Feminino , Tálamo/fisiologia , Adulto Jovem , Dedos/fisiologia
13.
Sci Rep ; 14(1): 18700, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134592

RESUMO

Functional electrical stimulation (FES) can support functional restoration of a paretic limb post-stroke. Hebbian plasticity depends on temporally coinciding pre- and post-synaptic activity. A tight temporal relationship between motor cortical (MC) activity associated with attempted movement and FES-generated visuo-proprioceptive feedback is hypothesized to enhance motor recovery. Using a brain-computer interface (BCI) to classify MC spectral power in electroencephalographic (EEG) signals to trigger FES-delivery with detection of movement attempts improved motor outcomes in chronic stroke patients. We hypothesized that heightened neural plasticity earlier post-stroke would further enhance corticomuscular functional connectivity and motor recovery. We compared subcortical non-dominant hemisphere stroke patients in BCI-FES and Random-FES (FES temporally independent of MC movement attempt detection) groups. The primary outcome measure was the Fugl-Meyer Assessment, Upper Extremity (FMA-UE). We recorded high-density EEG and transcranial magnetic stimulation-induced motor evoked potentials before and after treatment. The BCI group showed greater: FMA-UE improvement; motor evoked potential amplitude; beta oscillatory power and long-range temporal correlation reduction over contralateral MC; and corticomuscular coherence with contralateral MC. These changes are consistent with enhanced post-stroke motor improvement when movement is synchronized with MC activity reflecting attempted movement.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potencial Evocado Motor , Córtex Motor , Plasticidade Neuronal , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Reabilitação do Acidente Vascular Cerebral/métodos , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Córtex Motor/fisiopatologia , Estimulação Magnética Transcraniana/métodos
14.
J Comput Neurosci ; 34(3): 411-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23104010

RESUMO

A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.


Assuntos
Encéfalo/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Simulação por Computador , Eletroencefalografia , Lateralidade Funcional , Humanos , Cadeias de Markov , Desempenho Psicomotor , Curva ROC , Fatores de Tempo
15.
Brain Sci ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421869

RESUMO

Transcranial direct current stimulation (TDCS) is a technique with which neuronal activity, and therefore potentially behavior, is modulated by applying weak electrical currents to the scalp. Application of TDCS to enhance working memory (WM) has shown promising but also contradictory results, and little emphasis has been placed on repeated stimulation protocols, in which effects are expected to be increased. We aimed to characterize potential behavioral and electrophysiological changes induced by TDCS during WM training and evaluate whether repetitive anodal TDCS has a greater modulatory impact on the processes underpinning WM than single-session stimulation. We examined the effects of single-session and repetitive anodal TDCS to the dorsolateral prefrontal cortex (DLPFC), targeting the frontal-parietal network, during a WM task in 20 healthy participants. TDCS had no significant impact on behavioral measures, including reaction time and accuracy. Analyzing the electrophysiological response, the P300 amplitude significantly increased following repetitive anodal TDCS, however, positively correlating with task performance. P300 changes were identified over the parietal cortex, which is known to engage with the frontal cortex during WM processing. These findings support the hypothesis that repetitive anodal TDCS modulates electrophysiological processes underlying WM.

16.
Front Public Health ; 10: 849161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530727

RESUMO

Objective: The treatment of patients with dementia poses a considerable challenge to regional district general hospitals, particularly in rural areas. Here we report the establishment and initial evaluation of a dementia-specific consultation service provided by a teaching hospital-based Psychiatry Department to regional district general hospitals in surrounding smaller towns. Methods: The consultation service was provided to patients with pre-existing or newly suspected dementia, who were in acute hospital care for concurrent conditions. An evaluation of 61 consultations - 49 on-site and 12 via telemedicine - was performed to assess the needs of the participating hospitals and the specific nature of the referrals to the consultation service. Results: Suspected dementia or cognitive dysfunction was the primary reason for consultation requests (>50% of cases). Other common requests concerned suspected delirium, behavioral symptoms, and therapeutic recommendations. During the consultations, a diagnosis of dementia was reached in 52.5% of cases, with other common diagnoses including delirium and depression. Recommendations related to pharmacotherapy were given in 54.1% of consultations. Other recommendations included referral for outpatient neurological or psychiatric follow-up, further diagnostic assessment, or assessment in a memory clinic. Geriatric psychiatric inpatient treatment was recommended in only seven cases (11.5 %). Conclusion: Our initial evaluation demonstrates the feasibility of providing a dementia-specific consultation service in rural areas. The service has the potential to reduce acute transfers to inpatient geriatric psychiatry and enables older patients with dementia or delirium to be treated locally by helping and empowering rurally-based regional hospitals to manage these problems and associated complications.


Assuntos
Delírio , Demência , Humanos , Idoso , Hospitais Gerais , Encaminhamento e Consulta , Hospitais de Ensino , Delírio/diagnóstico , Delírio/psicologia , Demência/terapia , Demência/diagnóstico , Demência/psicologia
17.
JMIR Res Protoc ; 10(5): e28673, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33979297

RESUMO

BACKGROUND: School closures are a widely implemented strategy for limiting infection spread in the current COVID-19 pandemic. The negative impact of school closures on children and young people is increasingly apparent, however. OBJECTIVE: We aim to evaluate the feasibility of an infection monitoring program in schools to enable targeted quarantining to replace school closures. The program is currently being implemented in two model schools in Magdeburg, Germany, within the framework of the Study of Coronavirus Outbreak Prevention in Magdeburg Schools (Studie zur Ausbruchsvermeidung von Corona an Magdeburger Schulen [STACAMA]). METHODS: Five pupils per class are pseudorandomly selected twice a week and asked to provide a gargle sample over a 16-week evaluation period. RNA is extracted from each sample individually in a laboratory and pooled according to school class for real-time reverse transcription polymerase chain reaction (rRT-PCR) analysis. Immediate individual sample testing will be carried out in the case of a positive pool test. Individual RNA extraction prior to pooling and application of rRT-PCR result in high test sensitivity. Testing will be performed in strict adherence to data protection standards. All participating pupils will receive a 16-digit study code, which they will be able to use to access their test. RESULTS: When the study commenced on December 2, 2020, 520 (52%) pupils and their families or guardians had consented to study participation. The study was suspended after four test rounds due to renewed school closures resulting from rising regional infection incidence. Testing resumed when schools reopened on March 8, 2021, at which time consent to participation was provided for 54% of pupils. We will quantitatively and qualitatively evaluate the logistics and acceptability of the program. CONCLUSIONS: The findings from this study should inform the design of infection surveillance programs in schools based on gargle samples and a PCR-based pool testing procedure, enabling the identification of aspects that may require adaptation before large-scale implementation. Our focus on each step of the logistics and on the experiences of families should enable a robust assessment of the feasibility of such an approach. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/28673.

18.
Sci Rep ; 11(1): 19521, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593887

RESUMO

School closures have a negative impact on physical and mental well-being, and education, of children and adolescents. A surveillance programme to detect asymptomatic SARS-CoV-2 infection could allow schools to remain open, while protecting the vulnerable. We assessed the feasibility of a programme employing gargle samples and pool testing of individually extracted RNA using rRT-qPCR in a primary and a secondary school in Germany, based on programme logistics and acceptance. Twice a week, five participants per class were selected to provide samples, using an algorithm weighted by a risk-based priority score to increase likelihood of case detection. The positive response rate was 54.8% (550 of 1003 pupils). Logistics evaluation revealed the rate-limiting steps: completing the regular pre-test questionnaire and handing in the samples. Acceptance questionnaire responses indicated strong support for research into developing a surveillance programme and a positive evaluation of gargle tests. Participation was voluntary. As not all pupils participated, individual reminders could lead to participant identification. School-wide implementation of the programme for infection monitoring purposes would enable reminders to be given to all school pupils to address these steps, without compromising participant anonymity. Such a programme would provide a feasible means to monitor asymptomatic respiratory tract infection in schools.


Assuntos
COVID-19/diagnóstico , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Monitoramento Epidemiológico , Instituições Acadêmicas/estatística & dados numéricos , Adolescente , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Criança , Estudos de Viabilidade , Alemanha/epidemiologia , Humanos , Pandemias , Saliva/virologia , Estudantes/estatística & dados numéricos , Inquéritos e Questionários
19.
Neurosci Biobehav Rev ; 126: 146-158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737103

RESUMO

Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.


Assuntos
Núcleos Anteriores do Tálamo , Neocórtex , Animais , Eletroencefalografia , Hipocampo , Humanos , Memória
20.
Front Neurosci ; 14: 591777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335470

RESUMO

Regaining communication abilities in patients who are unable to speak or move is one of the main goals in decoding brain waves for brain-computer interface (BCI) control. Many BCI approaches designed for communication rely on attention to visual stimuli, commonly applying an oddball paradigm, and require both eye movements and adequate visual acuity. These abilities may, however, be absent in patients who depend on BCI communication. We have therefore developed a response-based communication BCI, which is independent of gaze shifts but utilizes covert shifts of attention to the left or right visual field. We recorded the electroencephalogram (EEG) from 29 channels and coregistered the vertical and horizontal electrooculogram. Data-driven decoding of small attention-based differences between the hemispheres, also known as N2pc, was performed using 14 posterior channels, which are expected to reflect correlates of visual spatial attention. Eighteen healthy participants responded to 120 statements by covertly directing attention to one of two colored symbols (green and red crosses for "yes" and "no," respectively), presented in the user's left and right visual field, respectively, while maintaining central gaze fixation. On average across participants, 88.5% (std: 7.8%) of responses were correctly decoded online. In order to investigate the potential influence of stimulus features on accuracy, we presented the symbols with different visual angles, by altering symbol size and eccentricity. The offline analysis revealed that stimulus features have a minimal impact on the controllability of the BCI. Hence, we show with our novel approach that spatial attention to a colored symbol is a robust method with which to control a BCI, which has the potential to support severely paralyzed people with impaired eye movements and low visual acuity in communicating with their environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA