Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 19(1): 812, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419824

RESUMO

BACKGROUND: Current heart failure (HF) treatment is based on targeting symptoms and left ventricle dysfunction severity, relying on a common HF pathway paradigm to justify common treatments for HF patients. This common strategy may belie an incomplete understanding of heterogeneous underlying mechanisms and could be a barrier to more precise treatments. We hypothesized we could use RNA-sequencing (RNA-seq) in human heart tissue to delineate HF etiology-specific gene expression signatures. RESULTS: RNA-seq from 64 human left ventricular samples: 37 dilated (DCM), 13 ischemic (ICM), and 14 non-failing (NF). Using a multi-analytic approach including covariate adjustment for age and sex, differentially expressed genes (DEGs) were identified characterizing HF and disease-specific expression. Pathway analysis investigated enrichment for biologically relevant pathways and functions. DCM vs NF and ICM vs NF had shared HF-DEGs that were enriched for the fetal gene program and mitochondrial dysfunction. DCM-specific DEGs were enriched for cell-cell and cell-matrix adhesion pathways. ICM-specific DEGs were enriched for cytoskeletal and immune pathway activation. Using the ICM and DCM DEG signatures from our data we were able to correctly classify the phenotypes of 24/31 ICM and 32/36 DCM samples from publicly available replication datasets. CONCLUSIONS: Our results demonstrate the commonality of mitochondrial dysfunction in end-stage HF but more importantly reveal key etiology-specific signatures. Dysfunctional cell-cell and cell-matrix adhesion signatures typified DCM whereas signals related to immune and fibrotic responses were seen in ICM. These findings suggest that transcriptome signatures may distinguish end-stage heart failure, shedding light on underlying biological differences between ICM and DCM.


Assuntos
Biomarcadores/análise , Cardiomiopatia Dilatada/genética , Adesão Celular , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/genética , Imunidade Celular , Isquemia Miocárdica/genética , Cardiomiopatia Dilatada/patologia , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/patologia , Transcriptoma
2.
J Cell Sci ; 129(11): 2135-43, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27165304

RESUMO

Danon disease is a rare, severe X-linked form of cardiomyopathy caused by deficiency of lysosome-associated membrane protein 2 (LAMP-2). Other clinical manifestations include skeletal myopathy, cognitive defects and visual problems. Although individuals with Danon disease have been clinically described since the early 1980s, the underlying molecular mechanisms involved in pathological progression remain poorly understood. LAMP-2 is known to be involved in autophagy, and a characteristic accumulation of autophagic vacuoles in the affected tissues further supports the idea that autophagy is disrupted in this disease. The LAMP2 gene is alternatively spliced to form three splice isoforms, which are thought to play different autophagy-related cellular roles. This Commentary explores findings from genetic, histological, functional and tissue expression studies that suggest that the specific loss of the LAMP-2B isoform, which is likely to be involved in macroautophagy, plays a crucial role in causing the Danon phenotype. We also compare findings from mouse and cellular models, which have allowed for further molecular characterization but have also shown phenotypic differences that warrant attention. Overall, there is a need to better functionally characterize the LAMP-2B isoform in order to rationally explore more effective therapeutic options for individuals with Danon disease.


Assuntos
Autofagia , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Doença de Depósito de Glicogênio Tipo IIb/complicações , Doença de Depósito de Glicogênio Tipo IIb/patologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Humanos , Proteínas de Membrana Lisossomal/química , Proteínas de Membrana Lisossomal/metabolismo , Fenótipo
3.
Heart Fail Clin ; 14(2): 215-224, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29525649

RESUMO

Infiltrative cardiomyopathies are characterized by abnormal accumulation or deposition of substances in cardiac tissue leading to cardiac dysfunction. These can be inherited, resulting from mutations in specific genes, which engender a diverse array of extracardiac features but overlapping cardiac phenotypes. This article provides an overview of each inherited infiltrative cardiomyopathy, describing the causative genes, the pathologic mechanisms involved, the resulting cardiac manifestations, and the therapies currently offered or being developed.


Assuntos
Cardiomiopatias , Testes Genéticos/métodos , Miocárdio/patologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Marcadores Genéticos/genética , Humanos , Fenótipo
4.
Nat Commun ; 11(1): 4364, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868781

RESUMO

Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.


Assuntos
Arritmias Cardíacas/etiologia , Insuficiência Cardíaca , Miócitos Cardíacos/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Arritmias Cardíacas/prevenção & controle , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Receptores de Dopamina D1/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle
5.
JACC Basic Transl Sci ; 1(5): 344-359, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28008423

RESUMO

OBJECTIVE: To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism. BACKGROUND: DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes. METHODS: We performed whole exome sequencing (WES) in two multigenerational Italian families and one US family with arrhythmogenic DCM without skeletal muscle defects, in whom prior genetic testing had been unrevealing. Pathogenic variants were sought by a combination of bioinformatic filtering and cosegregation testing among affected individuals within the families. We performed function assays and generated a zebrafish morpholino knockdown model. RESULTS: A novel filamin C gene splicing variant (FLNC c.7251+1 G>A) was identified by WES in all affected family members in the two Italian families. A separate novel splicing mutation (FLNC c.5669-1delG) was identified in the US family. Western blot analysis of cardiac heart tissue from an affected individual showed decreased FLNC protein, supporting a haploinsufficiency model of pathogenesis. To further analyze this model, a morpholino knockdown of the ortholog filamin Cb in zebrafish was created which resulted in abnormal cardiac function and ultrastructure. CONCLUSIONS: Using WES, we identified two novel FLNC splicing variants as the likely cause of DCM in three families. We provided protein expression and in vivo zebrafish data supporting haploinsufficiency as the pathogenic mechanism leading to DCM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA