Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chem Res Toxicol ; 29(10): 1778-1788, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27676153

RESUMO

Conjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC50 = 1.6 µM) and OATP1B3 (IC50 = 2.5 µM), which are responsible for the uptake-limited clearance of statins as well as bilirubin glucuronide conjugates. In the present work, inhibitory effects of fusidic acid were characterized against additional human hepatobiliary transporters [Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), and multidrug resistance-associated proteins MRP2 and MRP3] as well as uridine glucuronosyl transferase (UGT1A1), which mediate the disposition of bile acids and bilirubin (and its conjugated metabolites). Fusidic acid demonstrated concentration-dependent inhibition of human NTCP- and BSEP-mediated taurocholic acid transport with IC50 values of 44 and 3.8 µM, respectively. Inhibition of BSEP activity by fusidic acid was also consistent with the potent disruption of cellular biliary flux (AC50 = 11 µM) in the hepatocyte imaging assay technology assay, with minimal impact on other toxicity end points (e.g., cytotoxicity, mitochondrial membrane potential, reactive oxygen species generation, glutathione depletion, etc.). Fusidic acid also inhibited UGT1A1-catalyzed ß-estradiol glucuronidation activity in human liver microsomes with an IC50 value of 16 µM. Fusidic acid did not demonstrate any significant inhibition of ATP-dependent LTC4 transport (IC50's > 300 µM) in human MRP2 or MRP3 vesicles. R values, which reflect maximal in vivo inhibition, were estimated from a static mathematical model by taking into consideration the IC50 values generated in the various in vitro assays and clinically efficacious unbound fusidic acid concentrations. The magnitudes of in vivo interaction (R values) resulting from the inhibition of OATP1B1, UGT1A1, NTCP, and BSEP transport were ∼1.9-2.6, 1.1-1.2, 1.0-1.1, and 1.4-1.7, respectively, which are indicative of some degree of inherent toxicity risk, particularly via inhibition of OATP and BSEP. Collectively, these observations indicate that inhibition of human BSEP by fusidic acid could affect bile acid homeostasis, resulting in cholestatic hepatotoxicity in the clinic. Lack of direct inhibitory effects on MRP2 transport by fusidic acid suggests that conjugated hyperbilirubinemia does not arise via interference in MRP2-mediated biliary disposition of bilirubin glucuronides. Instead, it is possible that elevation in the level of bilirubin conjugates in blood is mediated through inhibition of hepatic OATPs, which are responsible for their reuptake and/or downregulation of MRP2 transporter as a consequence of cholestatic injury.

2.
Hepatology ; 60(3): 1015-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24799086

RESUMO

UNLABELLED: Drug-induced liver injury (DILI) accounts for 20-40% of all instances of clinical hepatic failure and is a common reason for withdrawal of an approved drug or discontinuation of a potentially new drug from clinical/nonclinical development. Numerous individual risk factors contribute to the susceptibility to human DILI and its severity that are either compound- and/or patient-specific. Compound-specific primary mechanisms linked to DILI include: cytotoxicity, reactive metabolite formation, inhibition of bile salt export pump (BSEP), and mitochondrial dysfunction. Since BSEP is an energy-dependent protein responsible for the efflux of bile acids from hepatocytes, it was hypothesized that humans exposed to drugs that impair both mitochondrial energetics and BSEP functional activity are more sensitive to more severe manifestations of DILI than drugs that only have a single liability factor. As annotated in the United States National Center for Toxicological Research Liver Toxicity Knowledge Base (NCTR-LTKB), the inhibitory properties of 24 Most-DILI-, 28 Less-DILI-, and 20 No-DILI-concern drugs were investigated. Drug potency for inhibiting BSEP or mitochondrial activity was generally correlated across human DILI concern categories. However, drugs with dual potency as mitochondrial and BSEP inhibitors were highly associated with more severe human DILI, more restrictive product safety labeling related to liver injury, and appear more sensitive to the drug exposure (Cmax) where more restrictive labeling occurs. CONCLUSION: These data affirm that severe manifestations of human DILI are multifactorial, highly associated with combinations of drug potency specifically related to known mechanisms of DILI (like mitochondrial and BSEP inhibition), and, along with patient-specific factors, lead to differences in the severity and exposure thresholds associated with clinical DILI.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
3.
PLoS Pathog ; 7(6): e1002092, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731489

RESUMO

Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Chlamydia/química , Retículo Endoplasmático/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação , Retículo Endoplasmático/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular
4.
Pharmacol Res Perspect ; 7(1): e00467, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30784208

RESUMO

During a randomized Phase 1 clinical trial the drug candidate, PF-04895162 (ICA-105665), caused transaminase elevations (≥grade 1) in six of eight healthy subjects treated at 300 mg twice daily for 2-weeks (NCT01691274). This was unexpected since studies in rats (<6 months) and cynomolgus monkeys (<9 months) treated up to 100 mg/kg/day did not identify the liver as a target organ. Mechanistic studies showed PF-04895162 had low cytotoxic potential in human hepatocytes, but inhibited liver mitochondrial function and bile salt export protein (BSEP) transport. Clinical relevance of these postulated mechanisms of liver injury was explored in three treated subjects that consented to analysis of residual pharmacokinetic plasma samples. Compared to a nonresponder, two subjects with transaminase elevations displayed higher levels of miRNA122 and total/conjugated bile acid species, whereas one demonstrated impaired postprandial clearance of systemic bile acids. Elevated taurine and glycine conjugated to unconjugated bile acid ratios were observed in two subjects, one before the onset of elevated transaminases. Based on the affinity of conjugated bile acid species for transport by BSEP, the profile of plasma conjugated/unconjugated bile acid species was consistent with inhibition of BSEP. These data collectively suggest that the human liver injury by PF-04895162 was due to alterations in bile acid handling driven by dual BSEP/mitochondrial inhibition, two important risk factors associated with drug-induced liver injury in humans. Alterations in systemic bile acid composition were more important than total bile acids in the manifestation of clinical liver injury and may be a very early biomarker of BSEP inhibition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Adulto , Animais , Transporte Biológico/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Método Duplo-Cego , Hepatócitos/metabolismo , Homeostase , Humanos , Macaca fascicularis , Masculino , Mitocôndrias Hepáticas/metabolismo , Ratos , Fatores de Risco , Especificidade da Espécie , Transaminases/metabolismo , Adulto Jovem
5.
Methods Mol Biol ; 1782: 71-87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850994

RESUMO

Interest in the investigation of mitochondrial dysfunction has seen a resurgence over recent years due to the implication of such dysfunction in both drug-induced toxicity and a variety of disease states. Here we describe a methodology to assist in such investigations whereby the oxygen consumption of isolated mitochondria is assessed in a high-throughput fashion using a phosphorescent oxygen-sensitive probe , standard microtiter plates, and plate reader detection. The protocols provided describe the required isolation procedures, initial assay optimization, and subsequent compound screening. Typical data is also provided illustrating the expected activity levels as well as recommended plate maps and data analysis approaches.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Polarografia/métodos , Animais , Bioensaio/instrumentação , Respiração Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/instrumentação , Fígado/citologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Oxigênio/metabolismo , Polarografia/instrumentação , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos
6.
Curr Protoc Toxicol ; 60: 25.4.1-17, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24865648

RESUMO

The mitochondrial permeability transition pore (MPTP) is a protein pore that forms in the inner mitochondrial membrane and allows the membrane to be permeable to all molecules of less than 1500 Da. Ca(2+), numerous reactive chemicals, and oxidative stress induce MPTP opening, whereas cyclosporin A (CsA) or bongkrekic acid block it. In addition, several drugs have been shown to induce MPTP opening, leading to the loss of mitochondrial membrane potential, swelling of the matrix because of water accumulation, rupture of the outer mitochondrial membrane, and release of intermembrane space proteins into the cytosol. This ultimately leads to the rupture of the outer mitochondrial membrane and cell demise. Here, we describe an assay using isolated rat liver mitochondria that can detect Ca(2+)-dependent drug-induced opening of the MPTP, providing protocols for screening in both cuvette and 96-well format.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Animais , Masculino , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley
7.
Cancer Res ; 74(14): 3659-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24845104

RESUMO

E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fenótipo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Processamento Pós-Transcricional do RNA , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma , Homeobox 1 de Ligação a E-box em Dedo de Zinco
8.
Curr Protoc Toxicol ; 60: 25.3.1-19, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24865647

RESUMO

Fatty acid beta oxidation is a major pathway of energy metabolism and occurs primarily in mitochondria. Drug-induced modulation of this pathway can cause adverse effects such as liver injury, or be beneficial for treating heart failure, type 2 diabetes, and obesity. Hence, in vitro assays that are able to identify compounds that affect fatty acid oxidation are of value for toxicity assessments, as well as for efficacy assessments. Here, we describe two high-throughput assays, one for assessing fatty acid oxidation in cells and the other for assessing fatty acid oxidation in isolated rat liver mitochondria. Both assays measure fatty acid-driven oxygen consumption and can be used for rapid and robust screening of compounds that modulate fatty acid oxidation.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Oxirredução , Ratos
9.
Toxicol Sci ; 137(1): 234-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24136188

RESUMO

Drug-induced liver injury (DILI) represents a leading cause of acute liver failure. Although DILI can be discovered in preclinical animal toxicology studies and/or early clinical trials, some human DILI reactions, termed idiosyncratic DILI (IDILI), are less predictable, occur in a small number of individuals, and do not follow a clear dose-response relationship. The emergence of IDILI poses a critical health challenge for patients and a financial challenge for the pharmaceutical industry. Understanding the cellular and molecular mechanisms underlying IDILI is key to the development of models that can assess potential IDILI risk. This study used Reverse Causal Reasoning (RCR), a method to assess activation of molecular signaling pathways, on gene expression data from rats treated with IDILI or pharmacologic/chemical comparators (NON-DILI) at the maximum tolerated dose to identify mechanistic pathways underlying IDILI. Detailed molecular networks involved in mitochondrial injury, inflammation, and endoplasmic reticulum (ER) stress were found in response to IDILI drugs but not negative controls (NON-DILI). In vitro assays assessing mitochondrial or ER function confirmed the effect of IDILI compounds on these systems. Together our work suggests that using gene expression data can aid in understanding mechanisms underlying IDILI and can guide in vitro screening for IDILI. Specifically, RCR should be considered for compounds that do not show evidence of DILI in preclinical animal studies positive for mitochondrial dysfunction and ER stress assays, especially when the therapeutic index toward projected human maximum drug plasma concentration is low.


Assuntos
Inteligência Artificial , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Biologia de Sistemas , Toxicogenética/métodos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Ratos Sprague-Dawley , Medição de Risco , Fatores de Risco , Fatores de Tempo
10.
mBio ; 4(1): e00606-12, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23362322

RESUMO

UNLABELLED: Coxiella burnetii is an intracellular pathogen that replicates within a lysosome-like vacuole. A Dot/Icm type IVB secretion system is used by C. burnetii to translocate effector proteins into the host cytosol that likely modulate host factor function. To identify host determinants required for C. burnetii intracellular growth, a genome-wide screen was performed using gene silencing by small interfering RNA (siRNA). Replication of C. burnetii was measured by immunofluorescence microscopy in siRNA-transfected HeLa cells. Newly identified host factors included components of the retromer complex, which mediates cargo cycling between the endocytic pathway and the Golgi apparatus. Reducing the levels of the retromer cargo-adapter VPS26-VPS29-VPS35 complex or retromer-associated sorting nexins abrogated C. burnetii replication. Several genes, when silenced, resulted in enlarged vacuoles or an increased number of vacuoles within C. burnetii-infected cells. Silencing of the STX17 gene encoding syntaxin-17 resulted in a striking defect in homotypic fusion of vacuoles containing C. burnetii, suggesting a role for syntaxin-17 in regulating this process. Lastly, silencing host genes needed for C. burnetii replication correlated with defects in the translocation of Dot/Icm effectors, whereas, silencing of genes that affected vacuole morphology, but did not impact replication, did not affect Dot/Icm translocation. These data demonstrate that C. burnetii vacuole maturation is important for creating a niche that permits Dot/Icm function. Thus, genome-wide screening has revealed host determinants involved in sequential events that occur during C. burnetii infection as defined by bacterial uptake, vacuole transport and acidification, activation of the Dot/Icm system, homotypic fusion of vacuoles, and intracellular replication. IMPORTANCE: Q fever in humans is caused by the bacterium Coxiella burnetii. Infection with C. burnetii is marked by its unique ability to replicate within a large vacuolar compartment inside cells that resembles the harsh, acidic environment of a lysosome. Central to its pathogenesis is the delivery of bacterial effector proteins into the host cell cytosol by a Dot/Icm type IVB secretion system. These proteins can interact with and manipulate host factors, thereby leading to creation and maintenance of the vacuole that the bacteria grow within. Using high-throughput genome-wide screening in human cells, we identified host factors important for several facets of C. burnetii infection, including vacuole transport and membrane fusion events that promote vacuole expansion. In addition, we show that maturation of the C. burnetii vacuole is necessary for creating an environment permissive for the Dot/Icm delivery of bacterial effector proteins into the host cytosol.


Assuntos
Coxiella burnetii/patogenicidade , Interações Hospedeiro-Patógeno , Febre Q/patologia , Coxiella burnetii/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Testes Genéticos/métodos , Genoma Humano , Células HeLa , Humanos , Microscopia de Fluorescência , Interferência de RNA , Vacúolos/microbiologia
11.
Toxicol Sci ; 131(1): 271-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22977170

RESUMO

Mitochondrial dysfunction has been implicated as an important factor in the development of idiosyncratic organ toxicity. An ability to predict mitochondrial dysfunction early in the drug development process enables the deselection of those drug candidates with potential safety liabilities, allowing resources to be focused on those compounds with the highest chance of success to the market. A database of greater than 2000 compounds was analyzed to identify structural and physicochemical features associated with the uncoupling of oxidative phosphorylation (herein defined as an increase in basal respiration). Many toxicophores associated with potent uncoupling activity were identified, and these could be divided into two main mechanistic classes, protonophores and redox cyclers. For the protonophores, potent uncoupling activity was often promoted by high lipophilicity and apparent stabilization of the anionic charge resulting from deprotonation of the protonophore. The potency of redox cyclers did not appear to be prone to variations in lipophilicity. Only 11 toxicophores were of sufficient predictive performance that they could be incorporated into a structural-alert model. Each alert was associated with one of three confidence levels (high, medium, and low) depending upon the lipophilicity-activity profile of the structural class. The final model identified over 68% of those compounds with potent uncoupling activity and with a value for specificity above 99%. We discuss the advantages and limitations of this approach and conclude that although structural alert methodology is useful for identifying toxicophores associated with mitochondrial dysfunction, they are not a replacement for the mitochondrial dysfunction assays in early screening paradigms.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa , Preparações Farmacêuticas , Desacopladores , Animais , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Técnicas In Vitro , Consumo de Oxigênio , Preparações Farmacêuticas/química , Ratos , Relação Estrutura-Atividade , Desacopladores/efeitos adversos , Desacopladores/química
12.
Toxicol In Vitro ; 27(2): 560-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23147640

RESUMO

Mitochondrial toxicity is a major reason for safety-related compound attrition and post-market drug withdrawals, highlighting the necessity for higher-throughput screens that can identify this mechanism of toxicity during the early stages of drug discovery. Here, we present the validation of a 384-well dual parameter plate-based assay capable of measuring oxygen consumption and extracellular acidification in intact cells simultaneously. The assay showed good reproducibility and robustness and is suitable for use with both suspension cells and adherent cells. To determine if the assay provides additional value in detecting mitochondrial toxicity over existing platforms, 200 commercially available drugs were tested in the assay using HL60 suspension cells as well as in two conventional mitochondrial toxicity assays: an oxygen consumption assay that uses isolated mitochondria and a cell-based assay that uses HepG2 cells grown in glucose and galactose media. The combination of the dual parameter assay and the isolated mitochondrial oxygen consumption assay identified more compounds that caused mitochondrial impairment than any other combination of the three assays or each of the three assays on its own. Furthermore, novel information was obtained from the dual parameter assay on drugs not previously reported to cause mitochondrial impairment.


Assuntos
Bioensaio/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mitocôndrias Hepáticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células HL-60 , Células Hep G2 , Humanos , Masculino , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
13.
Toxicol In Vitro ; 27(6): 1789-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23726864

RESUMO

Drug-induced mitochondrial dysfunction is known to contribute to late stage compound attrition. Recently, assays that identify mitochondrial dysfunction have been developed but many require expensive reagents, specialized equipment, or specialized expertise such as isolation of mitochondria. Here, we validate a new 384-well format cell-based dual parameter assay that uses commonly available detection methods to measure both mitochondrial toxicity and cytotoxicity. In our initial evaluation, antimycin A, CCCP, nefazodone, flutamide, and digitonin were tested in K562 cells in both glucose- and galactose-supplemented media with a 2h incubation. The assay was able to correctly differentiate these compounds into mitochondrial toxicants and non-mitochondrial toxicants, and had excellent reproducibility. We next tested 74 compounds in K562 cells in both types of media and show that the assay was able to correctly identify some of the compounds as mitochondrial toxicants. Moreover, the assay could be simplified, without loss of information, by using K562 cells in galactose-containing medium alone. This simple, robust assay can be positioned as a rapid, early readout of mitochondrial and cellular toxicity. However, since the assay fails to identify some mitochondrial toxicants, further assays may be required to detect mitochondrial toxicity once lead compounds have been selected.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ensaios de Triagem em Larga Escala , Mitocôndrias/efeitos dos fármacos , Bioensaio , Morte Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Hepatócitos , Humanos , Células K562 , Miócitos Cardíacos , Reprodutibilidade dos Testes , Células-Tronco/citologia
14.
Methods Mol Biol ; 810: 59-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22057560

RESUMO

Interest in the investigation of mitochondrial dysfunction has seen a resurgence over recent years due to the implication of such dysfunction in both drug-induced toxicity and a variety of disease states. Here, we describe a methodology to assist in such investigations whereby the oxygen consumption of isolated mitochondria is assessed in a high-throughput fashion using a phosphorescent oxygen-sensitive probe, standard microtitre plates, and plate reader detection. The protocols provided describe the required isolation procedures, initial assay optimization, and subsequent compound screening. Typical data is also provided illustrating the expected activity levels as well as recommended plate maps and data analysis approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Curr Protoc Toxicol ; Chapter 2: Unit2.20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21818751

RESUMO

Drug-induced mitochondrial toxicity has been recognized as contributing to a variety of organ toxicities, such as liver, heart, kidney, and CNS, and has been found to contribute to drug attrition and black box warnings. Here, we describe a cell-based assay that can detect direct drug-induced mitochondrial toxicity, providing protocols for screening in 96- and 384-well format. Cultured cells grown in glucose media produce their ATP by glycolysis, largely bypassing the mitochondria, and hence are fairly resistant to drugs that affect mitochondrial function. However, when growing the same cells in media supplemented with galactose as opposed to glucose, they are forced to produce ATP through oxidative phosphorylation, which then makes them vulnerable to mitochondrial insult. By measuring viability of cells grown in either glucose- or galactose-supplemented media, direct mitochondrial impairment can be detected.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Galactose/farmacologia , Glucose/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/normas , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Galactose/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/normas
16.
PLoS One ; 6(8): e23399, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853127

RESUMO

Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin-based motility, such as CSNK2B, Listeria monocytogenes requires specific host factors, such as CSNK1A1 in order to form productive membrane protrusions and spread from cell to cell.


Assuntos
Testes Genéticos , Interações Hospedeiro-Patógeno/genética , Listeria monocytogenes/citologia , Fosfotransferases/metabolismo , Interferência de RNA , Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Movimento , Reprodutibilidade dos Testes , Rickettsia conorii/citologia
17.
Cell Host Microbe ; 6(3): 268-78, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19748468

RESUMO

The actin-based motility of the intracellular pathogen Listeria monocytogenes relies on ActA, a bacterial factor with a structural domain allowing it to mimic the actin nucleation-promoting activity of host cell proteins of the WASP/WAVE family. Here, we used an RNAi-based genetic approach in combination with computer-assisted image analysis to investigate the role of host factors in L. monocytogenes cell-to-cell spread. We showed that the host cell serine/threonine kinase CK2 is required for efficient actin tail formation by L. monocytogenes. Furthermore, CK2-mediated phosphorylation of ActA regulated its affinity for the actin-nucleating ARP2/3 complex, as is the case for CK2-mediated phosphorylation of WASP and WAVE. Thus, ActA not only displays structural mimicry of WASP/WAVE family members, but also regulatory mimicry, having precisely co-opted the host machinery regulating these proteins. Comparisons based on ActA amino acid sequence suggest that unrelated pathogens that display actin-based motility may have evolved a similar strategy of regulatory mimicry.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Bactérias/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caseína Quinase II/metabolismo , Feminino , Células HeLa , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeriose/enzimologia , Listeriose/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA