Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 101(3): 553-66, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18727127

RESUMO

Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Animais , Células CHO , Cromatografia por Troca Iônica/métodos , Cricetinae , Cricetulus
2.
Biotechnol Bioeng ; 100(5): 950-63, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18551530

RESUMO

Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions.


Assuntos
Cromatografia por Troca Iônica/instrumentação , Robótica/instrumentação , Manejo de Espécimes/instrumentação , Cromatografia por Troca Iônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Robótica/métodos , Manejo de Espécimes/métodos
3.
J Pharm Sci ; 97(10): 4208-18, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18300304

RESUMO

Virus-like particles (VLPs) used as vaccine antigens often elicit strong immune responses due to their intrinsic repetitive, high-density display of epitopes, and the fact that the mammalian immune system is highly attuned to recognizing particles in the size range of viruses (20-150 nm). To retain these immunogenic qualities, vaccines that utilize virus-like particle (VLP) antigens should be formulated to stabilize both native conformational epitopes and the overall particulate nature of the VLP. This work describes a systematic approach for identifying potential stabilizers for formulation of Norwalk VLPs (NV-VLPs) in aqueous suspension. A number of excipients were screened for their ability to inhibit aggregation of NV-VLPs under conditions known to induce aggregation. Those compounds shown to inhibit aggregation were further evaluated under conditions of thermal stress and the NV-VLP structure was monitored using biophysical techniques such as CD, ANS fluorescence, and DSC to provide insight into the mechanisms by which stability was conferred. Increased thermal stability in the presence of chitosan glutamate, sucrose, and trehalose was correlated with stabilization of secondary and tertiary structural elements of NV-VLPs. These excipients may be useful for formulation of a stable NV-VLP vaccine.


Assuntos
Norovirus/química , Vírion/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Espectrometria de Fluorescência , Vírion/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA