Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(13): 10054-10068, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482933

RESUMO

In this work, we employ a fast and less toxic modified Hummers' method to develop graphene oxide (GO) with varying degrees of oxidation and investigate the effect of the latter on the structure and the thermal properties of the synthesized materials. Two different key parameters, the time of the oxidation reaction and the mass of the oxidation agent, were systematically altered in order to fine tune the oxidation degree. All graphene oxides were characterized by a plethora of experimental techniques, like X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) for their structural, thermal and chemical identification. The results revealed that for a certain amount of oxidant, the time does not affect the final degree of oxidation of the materials, at least for the examined reaction times, because very similar structural patterns and thermal properties were obtained. At the same time, the oxygen-containing functional groups were found very similar. On the other hand, the degree of oxidation was found highly dependent on the mass of the oxidizing agent. XRD analysis showed a systematic increase of the interlayer distance of the synthesized GOs with the increase of the oxidant mass, whereas both the enthalpy of reduction and the % weight loss were increased. Moreover, XPS measurements provided a quantitative evaluation of the amount of carbon and oxygen in the materials; the increase of the oxidant mass led to a decrease of the total carbon content with the concurrent increase of the total oxygen amount.

2.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364229

RESUMO

The global trend in restrictions on pollutant emissions requires the use of catalytic converters in the automotive industry. Noble metals belonging to the platinum group metals (PGMs, platinum, palladium, and rhodium) are currently used for autocatalysts. However, recent efforts focus on the development of new catalytic converters that combine high activity and reduced cost, attracting the interest of the automotive industry. Among them, the partial substitution of PGMs by abundant non-PGMs (transition metals such as copper) seems to be a promising alternative. The PROMETHEUS catalyst (PROM100) is a polymetallic nanosized copper-based catalyst for automotives prepared by a wet impregnation method, using as a carrier an inorganic mixed oxide (CeO2-ZrO2) exhibiting elevated oxygen storage capacity. On the other hand, catalyst deactivation or ageing is defined as the process in which the structure and state of the catalyst change, leading to the loss of the catalyst's active sites with a subsequent decrease in the catalyst's performance, significantly affecting the emissions of the catalyst. The main scope of this research is to investigate in detail the effect of ageing on this low-cost, effective catalyst. To that end, a detailed characterization has been performed with a train of methods, such as SEM, Raman, XRD, XRF, BET and XPS, to both ceria-zirconia mixed inorganic oxide support (CZ-fresh and -aged) and to the copper-based catalyst (PROM100-fresh and -aged), revealing the impact of ageing on catalytic efficiency. It was found that ageing affects the Ce-Zr mixed oxide structure by initiating the formation of distinct ZrO2 and CeO2 structures monitored by Raman and XRD. In addition, it crucially affects the morphology of the sample by reducing the surface area by a factor of nearly two orders of magnitude and increasing particle size as indicated by BET and SEM due to sintering. Finally, the Pd concentration was found to be considerably reduced from the material's surface as suggested by XPS data. The above-mentioned alterations observed after ageing increased the light-off temperatures by more than 175 °C, compared to the fresh sample, without affecting the overall efficiency of the catalyst for CO and CH4 oxidation reactions. Metal particle and CeZr carrier sintering, washcoat loss as well as partial metal encapsulation by Cu and/or CeZrO4 are identified as the main causes for the deactivation after hydrothermal ageing.

3.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430016

RESUMO

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


Assuntos
Plaquetas/química , Compostos de Boro/química , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Compostos de Boro/efeitos adversos , Humanos , Espécies Reativas de Oxigênio/química
4.
Nanotechnology ; 31(44): 445101, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32674094

RESUMO

The physicochemical properties and the toxicological potential of commercially available MoS2 nanoparticles with different lateral size and degradation stage were studied in the present research work. To achieve this, the structure and stoichiometry of fresh and old aqueous suspensions of micro-MoS2 and nano-MoS2 was analyzed by Raman, while x-ray photoelectron spectroscopy allowed to identify more quantitatively the nature of the formed oxidized species. A, the toxicological impact of the nanomaterials under analysis was studied using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus S. cerevisiae as biological models. Cell viability assays and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used and in function of the degradation state of the selected commercial nanoproducts. Both MoS2 nanoparticle types induced sublethal damage on the A549 cells though the increase of intracellular ROS levels, while comparable concentrations reduced the viability of yeast cells. In addition, the old MoS2 nanoparticles suspensions exhibited a higher toxicity for both human and yeast cells than the fresh ones. Our findings demonstrate that the fate assessment of nanomaterials is a critical aspect to increase the understanding on their characteristics and on their potential impact on biological systems along their life cycle.

5.
Nanotechnology ; 30(1): 015704, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362463

RESUMO

The mechanical integrity of composite materials depends primarily on the interface strength and the defect density of the reinforcement which is the provider of enhanced strength and stiffness. In the case of graphene/polymer nanocomposites which are characterized by an extremely large interface region, any defects in the inclusion (such as folds, cracks, holes, etc) will have a detrimental effect to the internal strain distribution and the resulting mechanical performance. This conventional wisdom, however, can be challenged if the defect size is reduced beyond the critical size for crack formation to the level of atomic vacancies. In that case, there should be no practical effect on crack propagation and depending on the nature of the vacancies the interface strength may in fact increase. In this work we employed argon ion (Ar+) bombardment and subsequent exposure to hydrogen (H2) to induce (as revealed by x-ray and ultraviolet photoelectron spectroscopy and Raman spectroscopy) passivated atomic single vacancies to CVD graphene. The modified graphene was subsequently transferred to PMMA bars and the morphology, wettability and the interface adhesion of the CVD graphene/PMMA system were investigated with atomic force microscopy technique and Raman analysis. The results obtained showed clearly an overall improved mechanical behavior of graphene/polymer interface, since an increase as well as a more uniform shift distribution with strain is observed. This paves the way for interface engineering in graphene/polymer systems which, in pristine condition, suffer from premature graphene slippage and subsequent failure.

6.
ACS Appl Nano Mater ; 7(4): 3782-3792, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912400

RESUMO

The transcendence toward smarter technologies and the rapid expansion of the Internet of Things requires miniaturized energy storage systems, which may also be shape-conformable, such as microflexible supercapacitors. Their fabrication must be compatible with emerging manufacturing platforms with regard to scalability and sustainability. Here, we modify a laser-based method we recently developed for simultaneously synthesizing and transferring graphene onto a selected substrate. The modification of the method lies in the tuning of two key parameters, namely, the inclination of the laser beam and the distance between the precursor material and the acceptor substrate. A proper combination of these parameters enables the displacement of the trace of the transmitted laser beam from the deposited graphene film area. This mitigates the negative effects that arise from the laser-induced ablation of graphene on heat-sensitive substrates and significantly improves the electrical conductivity of the graphene films. The optimized graphene exhibits very high C/O (36) and sp2/sp3 (13) ratios. Post-transport irradiation was used to transform the continuous graphene films to interdigitated electrodes. The capacitance of the microflexible supercapacitor was measured to be among the highest reported ones in relation to interdigitated supercapacitors with electrodes based on laser-grown graphene. The device shows good cycling stability, retaining 91% of its capacitance after 10,000 cycles, showing no substantial degradation after applying bending conditions. This promising laser-based approach emerges as a viable alternative for the fabrication of microflexible interdigitated supercapacitors for paper electronics and smart textiles.

7.
Environ Sci Pollut Res Int ; 30(37): 87810-87829, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37430083

RESUMO

In this study, conventional and Graphene Oxide-engineered biochars were produced and thoroughly characterized, in order to investigate their potential as adsorptive materials. Two types of biomass, Rice Husks (RH) and Sewage Sludge (SS), two Graphene Oxide (GO) doses, 0.1% and 1%, and two pyrolysis temperatures, 400 °C and 600 °C were investigated. The produced biochars were characterized in physicochemical terms and the effect of biomass, GO functionalization and pyrolysis temperature on biochar properties was studied. The produced samples were then applied as adsorbents for the removal of six organic micro-pollutants from water and treated secondary wastewater. Results showed that the main factors affecting biochar structure was biomass type and pyrolysis temperature, while GO functionalization caused significant changes on biochar surface by increasing the available C- and O- based functional groups. Biochars produced at 600 °C showed higher C content and Specific Surface Area, presenting more stable graphitic structure, compared to biochars produced at 400 °C. Micro-pollutant adsorption rates were in the range of 39.9%-98.3% and 9.4%-97.5% in table water and 28.3%-97.5% and 0.0%-97.5% in treated municipal wastewater, for the Rice Husk and Sewage Sludge biochars respectively. The best biochars, in terms of structural properties and adsorption efficiency were the GO-functionalized biochars, produced from Rice Husks at 600 °C, while the most difficult pollutant to remove was 2.4-Dichlorophenol.


Assuntos
Poluentes Ambientais , Esgotos , Esgotos/química , Adsorção , Águas Residuárias , Carvão Vegetal/química , Água/química
8.
Environ Sci Pollut Res Int ; 30(60): 124976-124991, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37160858

RESUMO

In this study, carbon quantum dots (C-QDs), prepared via hydrothermal-microwave procedures, were successfully combined with nanostructured titania (TiO2). The photocatalytic oxidation/reduction activity of the C-QDs/TiO2 composite films was evaluated in the decomposition of organic-inorganic contaminants from aqueous solutions under UV illumination. Physicochemical characterizations were applied to investigate the crystal structure of the carbon quantum dots and the composites. It was found that the prepared C-QDs/TiO2 composites had great contribution to the photocatalytic reduction of hexavalent chromium (Cr+6) species and 4-Nitrophenol (PNP) as well as to the photocatalytic oxidation of methylene blue (MB) and Rhodamine B (RhB) dyes. The mechanism of the photocatalytic reaction was studied with trapping experiments, revealing that the electron (e-) radical species were powerfully supported for the photocatalytic reduction of Cr+6 and PNP and the holes (h+) are the main active species for the photocatalytic oxidation reactions.


Assuntos
Pontos Quânticos , Poluentes Químicos da Água , Poluentes da Água , Pontos Quânticos/química , Carbono , Poluentes Químicos da Água/análise
9.
J Am Chem Soc ; 134(39): 16178-87, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22938058

RESUMO

Molybdenum oxide is used as a low-resistance anode interfacial layer in applications such as organic light emitting diodes and organic photovoltaics. However, little is known about the correlation between its stoichiometry and electronic properties, such as work function and occupied gap states. In addition, despite the fact that the knowledge of the exact oxide stoichiometry is of paramount importance, few studies have appeared in the literature discussing how this stoichiometry can be controlled to permit the desirable modification of the oxide's electronic structure. This work aims to investigate the beneficial role of hydrogenation (the incorporation of hydrogen within the oxide lattice) versus oxygen vacancy formation in tuning the electronic structure of molybdenum oxides while maintaining their high work function. A large improvement in the operational characteristics of both polymer light emitting devices and bulk heterojunction solar cells incorporating hydrogenated Mo oxides as hole injection/extraction layers was achieved as a result of favorable energy level alignment at the metal oxide/organic interface and enhanced charge transport through the formation of a large density of gap states near the Fermi level.

10.
Chemosphere ; 272: 129603, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33485043

RESUMO

The utilization of tungsten disulfide (WS2) nanomaterials in distinct applications is raising due to their unique physico-chemical properties, such as low friction coefficient and high strength, which highlights the necessity to study their potential toxicological effects, due to the potential increase of environmental and human exposure. The aim of this work was to analyze commercially available aqueous dispersions of monolayer tungsten disulfide (2D WS2) nanomaterials with distinct lateral size employing a portfolio of physico-chemical and toxicological evaluations. The structure and stoichiometry of monolayer tungsten disulfide (WS2-ACS-M) and nano size monolayer tungsten disulfide (WS2-ACS-N) was analyzed by Raman spectroscopy, whereas a more quantitative approach to study the nature of formed oxidized species was undertaken employing X-ray photoelectron spectroscopy. Adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the ecotoxicology model Saccharomyces cerevisiae were selected as unicellular eukaryotic systems to assess the cytotoxicity of the nanomaterials. Cell viability and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used. While both 2D WS2 suspensions showed very low toxicity towards the A549 cells, a comparable concentration (160 mg L-1) reduced the viability of yeast cells. The toxicity of a nano size 2D WS2 commercialized in dry form from the same provider was also assessed, showing ability to reduce yeast cells viability as well. Overall, the presented data reveal the physico-chemical properties and the potential toxicity of commercial 2D WS2 aqueous suspensions when interacting with distinct eukaryotic organisms, showing differences in function of the biological system exposed.


Assuntos
Nanoestruturas , Tungstênio , Células A549 , Dissulfetos/toxicidade , Humanos , Nanoestruturas/toxicidade , Saccharomyces cerevisiae , Suspensões , Tungstênio/toxicidade
11.
Sci Rep ; 11(1): 13548, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193924

RESUMO

Aerogels have attracted significant attention recently due to their ultra-light weight porous structure, mechanical robustness, high electrical conductivity, facile scalability and their use as gas and oil absorbers. Herein, we examine the multi-functional properties of hybrid aerogels consisting of reduced graphene oxide (rGO) integrated with hexagonal boron nitride (hBN) platelets. Using a freeze-drying approach, hybrid aerogels are fabricated by simple mixing with various volume fractions of hBN and rGO up to 0.5/0.5 ratio. The fabrication method is simple, cost effective, scalable and can be extended to other 2D materials combinations. The hybrid rGO/hBN aerogels (HAs) are mechanically robust and highly compressible with mechanical properties similar to those of the pure rGO aerogel. We show that the presence of hBN in the HAs enhances the gas absorption capacities of formaldehyde and water vapour up to ~ 7 and > 8 times, respectively, as compared to pure rGO aerogel. Moreover, the samples show good recoverability, making them highly efficient materials for gas absorption applications and for the protection of artefacts such as paintings in storage facilities. Finally, even in the presence of large quantity of insulating hBN, the HAs are electrically conductive, extending the potential application spectrum of the proposed hybrids to the field of electro-thermal actuators. The work proposed here paves the way for the design and production of novel 2D materials combinations with tailored multi-functionalities suited for a large variety of modern applications.

12.
Acta Chim Slov ; 67(2): 609-621, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33855555

RESUMO

In this study, Bi2O3-Co3O4 composite oxides were prepared and their catalytic efficiency to activate peroxymonosulfate (PMS) towards the degradation of Acid Orange 7 dye (AO7) was evaluated. The characterization of the synthesized catalysts was carried out by XRD, TEM, XPS, FT-IR, and ICP-OES analyses. The increased basicity of the Bi2O3-Co3O4 hybrids contributed to the much better catalytic activity in PMS activation resulting in a considerably higher rate of AO7 degradation compared to that obtained with bare Co3O4. The sample with 50 wt.% Bi2O3 showed the best performance under a broad pH range with very low Co leaching of 72 mg/L even under acidic conditions. Degradation of 50 mg/L AO7 reached almost 100% within a short duration of 12 min by using very low catalysts concentration of 0.1 g/L and [PMS]/[AO7] = 6. The influence of the Bi2O3 content, catalyst dosage, molar ratio of [PMS]/[AO7], initial pH, and temperature on AO7 degradation were studied. Surface-bound sulfate radicals generated in the Bi2O3-Co3O4/PMS oxidation system were proved as the predominant radical species through radical quenching experiments.

13.
Nanoscale ; 12(28): 15137-15149, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32638773

RESUMO

The photovoltaic efficiency and stability challenges encountered in perovskite solar cells (PSCs) were addressed by an innovative interface engineering approach involving the utilization of the organic chromophore (E)-3-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid (D35) as an interlayer between the perovskite absorber and the hole transporter (HTM) of mesoporous PSCs. The organic D-π-A interlayer primarily improves the perovskite's crystallinity and creates a smoother perovskite/HTM interface, while reducing the grain boundary defects and inducing an energy level alignment with the adjacent layers. Champion power conversion efficiencies (PCE) as high as 18.5% were obtained, clearly outperforming the reference devices. Interestingly, the D35-based solar cells present superior stability since they preserved 83% of their initial efficiency after 37 days of storage under dark and open circuit (OC) conditions. The obtained results consolidate the multifunctional role of organic D-π-A molecules as perovskite interface modifiers towards performance enhancement and scale-up fabrication of robust PSCs.

14.
ACS Omega ; 5(3): 1540-1548, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010827

RESUMO

The development of three-dimensional (3D) porous graphitic structures is of great interest for electrochemical sensing applications as they can support fast charge transfer and mass transport through their extended, large surface area networks. In this work, we present the facile fabrication of conductive and porous graphitic electrodes by direct laser writing techniques. Irradiation of commercial polyimide sheets (Kapton tape) was performed using a low-cost laser engraving machine with visible excitation wavelength (405 nm) at low power (500 mW), leading to formation of 3D laser-induced graphene (LIG) structures. Systematic correlation between applied laser dwell time per pixel ("dwell time") and morphological/structural properties of fabricated electrodes showed that conductive and highly 3D porous structures with spectral signatures of nanocrystalline graphitic carbon materials were obtained at laser dwell times between 20 and 110 ms/pix, with graphenelike carbon produced at 50 ms/pix dwell time, with comparable properties to LIG obtained with high cost CO2 lasers. Electrochemical characterization with inner and outer sphere mediators showed fast electron transfer rates, comparable to previously reported 2D/3D graphene-based materials and other graphitic carbon electrodes. This work opens the way to the facile fabrication of low-cost, disposable electrochemical sensor platforms for decentralized assays.

15.
Materials (Basel) ; 13(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992513

RESUMO

High volume fraction carbon nanotube (CNT) composites (7.5-16% vol.) were fabricated by the impregnation of CNT buckypapers into epoxy resin. To enhance the interfacial reaction with the epoxy resin, the CNTs were modified by two different treatments, namely, an epoxidation treatment and a chemical oxidation. The chemical treatment was found to result in CNT length severance and to affect the porosity of the buckypapers, having an important impact on the physico-mechanical properties of the nanocomposites. Overall, the mechanical, electrical, and thermal properties of the impregnated buckypapers were found to be superior of the neat epoxy resin, offering an attractive combination of mechanical, electrical, and thermal properties for multifunctional composites.

16.
J Phys Chem B ; 109(6): 2302-6, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851223

RESUMO

The substrate-induced oxidation upon prolonged annealing in UHV of ultrathin films of Ni and Cr vapor deposited on yttria-stabilized zirconia YSZ(100) was studied by X-ray photoelectron spectroscopy (XPS) to obtain information about the oxidation mechanism, determine the available quantity of reactive oxygen in YSZ, and investigate the thermal stability of the thin oxide films. Up to about 0.8 ML of Ni deposited at room temperature was oxidized to NiO at a constant rate at 650 K via the substrate, whereas at slightly higher coverage, the oxidation rate under identical conditions was drastically reduced. In contrast to Ni, up to 4.8 ML of Cr deposited at 275 K could be oxidized via the substrate to Cr2O3 upon extensive UHV annealing at increasing temperature up to 820 K, indicating a reactive oxygen content of at least 4 x 10(-6) with respect to the lattice oxygen in the YSZ specimen. The Cr2O3 decomposed to metallic Cr above about 800 K, whereas NiO was stable up to the maximum temperature of 875 K. These results indicate that the oxidation via the substrate is kinetically analogous to the gas-phase oxidation of bulk Ni and Cr. The reactive oxygen content of the single-crystal YSZ is larger than expected, and part of it is accommodated at the surface of the substrate. The thermal stability of the thin oxide films is determined by the oxygen exchange with YSZ and not by the respective bulk oxide thermodynamic decomposition temperature.

17.
Adv Sci (Weinh) ; 2(7): 1500058, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-27660741

RESUMO

High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180-200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25-45 cm2 V-1 s-1) than single oxide devices (typically 2-5 cm2 V-1 s-1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA