Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(4): 040406, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437418

RESUMO

A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B=2.31±0.02. This opens new possibilities for using continuous variable states for device independent quantum protocols.

2.
Nat Commun ; 7: 13222, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782135

RESUMO

The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications.

3.
Phys Rev Lett ; 100(24): 243601, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643584

RESUMO

We have experimentally demonstrated how two beams of light separated by an octave in frequency can become entangled after their interaction in a chi;{(2)} nonlinear medium. The entangler was a nonlinear optical resonator that was strongly driven by coherent light at the fundamental and second-harmonic wavelengths. An interconversion between the fields created quantum correlations in the amplitude and phase quadratures, which were measured by two independent homodyne detectors. Analysis of the resulting correlation matrix revealed a wave function inseparability of 0.74(1)<1, thereby satisfying the criterion of entanglement.

4.
Phys Rev Lett ; 98(15): 153603, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17501348

RESUMO

We present a technique for measuring the second-order coherence function g(2)(tau) of light using a Hanbury Brown-Twiss intensity interferometer modified for homodyne detection. The experiment was performed entirely in the continuous-variable regime at the sideband frequency of a bright carrier field. We used the setup to characterize g(2)(tau) for thermal and coherent states and investigated its immunity to optical loss. We measured g(2)(tau) of a displaced-squeezed state and found a best antibunching statistic of g(2)(0)=0.11+/-0.18.

5.
Phys Rev Lett ; 95(18): 180503, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16383884

RESUMO

We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s for 90% channel loss, per 17 MHz of detected bandwidth, assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.

6.
Phys Rev Lett ; 92(17): 177903, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15169193

RESUMO

We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73+/-0.04, a level achievable only using quantum resources.

7.
Phys Rev Lett ; 93(17): 170504, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525058

RESUMO

We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA