Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273083

RESUMO

DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.


Assuntos
Sobrevivência Celular , Glioblastoma , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Rad52 de Recombinação e Reparo de DNA , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Temozolomida/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Polimerase teta , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256118

RESUMO

Plectranthus scutellarioides (L.) R.Br. is a medicinal plant that has long been used in traditional medicine to treat conditions such as abscesses, ulcers, and ear and eye infections. It is known to have a wide range of biological properties, such as antibacterial, antioxidant, antifungal, anti-inflammatory, anti-diabetic and anti-cancer effects. In this study, we established in vitro cultures from both the aerial parts and roots of Plectranthus scutellarioides. Subsequently, we compared the basic phytochemical profile of the obtained extracts and conducted a biological analysis to assess their potential for inducing apoptosis in breast (MCF-7) and lung (A549) cancer cells. Phytochemical analysis by HPLC-MS revealed the presence of compounds belonging to phenolic acids (ferulic, syringic, vanillic, rosmarinic, chlorogenic, caffeic, coumaric, dihydroxybenzoic acids), flavonoids (eriodyctiol and cirsimaritin), and terpenes such as 6,11,12,14,16-Pentahydroxy-3,17diacetyl-8,11,13-abietatrien-7-one, 6,11,12,14,16-Pentahydroxy-3,17-diacetyl5,8,11,13-abietatetraen-7-one, and 3,6,12-Trihydroxy-2-acetyl-8,12-abietadien7,11,14-trione. The results show that both extracts have a cytotoxic and genotoxic effect against MCF-7 and A549 cancer cells, with a different degree of sensitivity. It was also shown that both extracts can induce apoptosis by altering the expression of apoptotic genes (Bax, Bcl-2, TP53, Fas, and TNFSF10), reducing mitochondrial membrane potential, increasing ROS levels, and increasing DNA damage. In addition, it has been shown that the tested extracts can alter blood coagulation parameters. Our results indicate that extracts from in vitro cultures of Plectranthus scutellarioides aerial parts and roots have promising therapeutic application, but further research is needed to better understand the mechanisms of their action in the in vitro model.


Assuntos
Ácidos Cumáricos , Plectranthus , Humanos , Células A549 , Antibacterianos , Compostos Fitoquímicos
3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833905

RESUMO

T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 µM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.


Assuntos
Micotoxinas , Toxina T-2 , Animais , Humanos , Micotoxinas/toxicidade , Micotoxinas/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Linhagem Celular , Dano ao DNA , DNA/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834200

RESUMO

One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.


Assuntos
Transtorno Depressivo Maior , Polimorfismo de Nucleotídeo Único , Humanos , Transtorno Depressivo Maior/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Estresse Oxidativo/genética
5.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903658

RESUMO

T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.


Assuntos
Micotoxinas , Toxina T-2 , Humanos , Linhagem Celular , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Micotoxinas/metabolismo , NADH Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Toxina T-2/metabolismo
6.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446611

RESUMO

Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.


Assuntos
Quitosana , Nanopartículas , Extratos Vegetais/farmacologia , Ginkgo biloba
7.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563320

RESUMO

T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.


Assuntos
Toxina T-2 , Apoptose , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Necrose/induzido quimicamente , Toxina T-2/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232954

RESUMO

Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.


Assuntos
Antineoplásicos , Diterpenos , Plectranthus , Antineoplásicos/farmacologia , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Colforsina/farmacologia , DNA Mitocondrial/metabolismo , Diterpenos/farmacologia , Corantes Fluorescentes/farmacologia , Iodetos , Potencial da Membrana Mitocondrial , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos , Proteína X Associada a bcl-2/metabolismo
9.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563407

RESUMO

The pathophysiology of atherosclerosis and acute coronary syndrome (ACS) is related to interactions between immune cells, endothelium, and blood platelets. An increasing number of reports confirm the link between excessive immune activation and cellular cross-talk with ACS incidence. Our genetic and proteomic analysis was performed on strictly selected atherosclerotic patients with non-fatal ACS without typical risk factors and healthy donors. Results showed changes in the gene expression levels of the various inflammatory factors derived from the peripheral blood cells that drive the over-activation of the immune system. The enhanced activation of the immune system may lead to the overexpression of the pro-inflammatory mediators, which causes self-perpetuating machinery of processes associated with thrombosis. In our preliminary study, we confirmed an altered expression of genes associated with the inflammation and overall interaction of the vascular microenvironment. Furthermore, 5 of 92 analyzed genes, CCL2, CCR2, CSF2, GZMB, and ICOS, were expressed only in patients with ACS. In conclusion, the augmented expression of the pro-inflammatory genes from the peripheral blood cells may be a crucial genetic factor leading to the occurrence of acute inflammation and thus be significant in ACS pathogenesis.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Aterosclerose/metabolismo , Plaquetas/metabolismo , Humanos , Inflamação/metabolismo , Proteômica , Transcriptoma
10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012250

RESUMO

The preclinical research conducted so far suggest that depression development may be influenced by the inflammatory pathways both at the periphery and within the central nervous system. Furthermore, inflammation is considered to be strongly connected with antidepressant treatment resistance. Thus, this study explores whether the chronic mild stress (CMS) procedure and agomelatine treatment induce changes in TGFA, TGFB, IRF1, PTGS2 and IKBKB expression and methylation status in peripheral blood mononuclear cells (PBMCs) and in the brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or agomelatine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that both CMS and antidepressant agomelatine treatment influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs and the brain. What is more, the present study showed that response to either stress stimuli or agomelatine differed between brain structures. Concluding, our results indicate that TGFA, TGFB, PTGS2, IRF1 and IKBKB could be associated with depression and its treatment.


Assuntos
Acetamidas , Encéfalo , Leucócitos Mononucleares , Naftalenos , Acetamidas/farmacologia , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Quinase I-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Naftalenos/farmacologia , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Estresse Psicológico
11.
J Cell Mol Med ; 24(10): 5675-5694, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281745

RESUMO

Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin-norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation-sensitive high-resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Estresse Oxidativo/genética , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo , Cloridrato de Venlafaxina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Especificidade de Órgãos/genética , Ratos , Estresse Psicológico/tratamento farmacológico , Sacarose/metabolismo , Transcriptoma
12.
Cell Mol Neurobiol ; 40(6): 1049-1056, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31912349

RESUMO

The purpose of the preliminary study was to determine whether the occurrence of certain SNPs of genes encoding IL-1α, IL-1ß, and TNF-α is associated with the development of depression. Five polymorphisms were selected: i.e. c.-1560G > C-IL-1ß (rs1143623), c. -118 C > T-IL-1ß (rs1143627), c.340G > T-IL-1α (rs17561), c.-1211T > C-TNF-α (rs1799964) and c.-488G > A-TNF-α (rs1800629). These were analyzed using TaqMan probes. The genotypes of the analyzed polymorphisms were found to be associated with disease severity and may affect the effectiveness of antidepressant therapy. In addition, the gene-gene analysis confirmed that combined genotypes of investigated SNPs may modulate the risk of depression.


Assuntos
Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Interleucina-1alfa/genética , Interleucina-1beta/genética , Polimorfismo de Nucleotídeo Único/genética , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Epigênese Genética , Humanos , Resultado do Tratamento
13.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374959

RESUMO

Previous studies suggest that depression may be associated with reactive oxygen species overproduction and disorders of the tryptophan catabolites pathway. Moreover, one-third of patients do not respond to conventional pharmacotherapy. Therefore, the study investigates the molecular effect of escitalopram on the expression of Cat, Gpx1/4, Nos1/2, Tph1/2, Ido1, Kmo, and Kynu and promoter methylation in the hippocampus, amygdala, cerebral cortex, and blood of rats exposed to CMS (chronic mild stress). The animals were exposed to CMS for two or seven weeks followed by escitalopram treatment for five weeks. The mRNA and protein expression of the genes were analysed using the TaqMan Gene Expression Assay and Western blotting, while the methylation was determined using methylation-sensitive high-resolution melting. The CMS caused an increase of Gpx1 and Nos1 mRNA expression in the hippocampus, which was normalised by escitalopram administration. Moreover, Tph1 and Tph2 mRNA expression in the cerebral cortex was increased in stressed rats after escitalopram therapy. The methylation status of the Cat promoter was decreased in the hippocampus and cerebral cortex of the rats after escitalopram therapy. The Gpx4 protein levels were decreased following escitalopram compared to the stressed/saline group. It appears that CMS and escitalopram influence the expression and methylation of the studied genes.


Assuntos
Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Estresse Psicológico/fisiopatologia , Triptofano/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Encéfalo/metabolismo , Catalase/genética , Catalase/metabolismo , Doença Crônica , Depressão/genética , Depressão/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Ratos Wistar , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Glutationa Peroxidase GPX1
14.
J Cell Mol Med ; 22(3): 1778-1791, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314569

RESUMO

Tryptophan catabolites pathway disorders are observed in patients with depression. Moreover, single nucleotide polymorphisms of tryptophan hydroxylase genes may modulate the risk of depression occurrence. The objective of our study was to confirm the association between the presence of polymorphic variants of TPH1 and TPH2 genes, and the development of depressive disorders. Six polymorphisms were selected: c.804-7C>A (rs10488682), c.-1668T>A (rs623580), c.803+221C>A (rs1800532), c.-173A>T (rs1799913)-TPH1, c.-1449C>A (rs7963803), and c.-844G>T (rs4570625)-TPH2. A total of 510 DNA samples (230 controls and 280 patients) were genotyped using TaqMan probes. Among the studied polymoorphisms, the G/G genotype and G allele of c.804-7C>A-TPH1, the T/T homozygote of c.803+221C>A-TPH1, the A/A genotype and A allele of c.1668T>A-TPH1, the G/G homozygote and G allele of c.-844G>T-TPH2, and the C/A heterozygote and A allele of c.-1449C>A-TPH2 were associated with the occurrence of depression. However, the T/T homozygote of c.-1668T>A-TPH1, the G/T heterozygote and T allele of c.-844G>T-TPH2, and the C/C homozygote and C allele of c.-1449C>A-TPH2 decreased the risk of development of depressive disorders. Each of the studied polymorphisms modulated the risk of depression for selected genotypes and alleles. These results support the hypothesis regarding the involvement of the pathway in the pathogenesis of depression.


Assuntos
Transtorno Depressivo/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Triptofano Hidroxilase/genética , Adulto , Idoso , Alelos , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
Scand J Clin Lab Invest ; 78(7-8): 626-631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30755096

RESUMO

Oxidative stress plays the most important role in the pathogenesis of stroke. Extremely low frequency electromagnetic field (ELF-EMF) therapy may be complementary in post-stroke therapy, as it modulates oxidative stress. The aim of this study was to evaluate the messenger ribonucleic acid (mRNA) levels of certain antioxidant genes in post-stroke patients given ELF-EMF therapy. Forty-eight post-stroke patients were divided into two groups: an ELF-EMF group and a non-ELF-EMF group. All patients underwent the same program of physical therapy, but the ELF-EMF group was additionally given ELF-EMF treatment. In order to determine the level of gene expression, we evaluated the level of mRNA expression of catalase, superoxide dismutase, and glutathione peroxidase. We observed that after ELF-EMF therapy, the mRNA expression of the studied genes (CAT, SOD1, SOD2, GPx1, and GPx4) significantly increased, which enhanced the antioxidant defence of the body. ELF-EMF therapy intensifies the endogenous antioxidant system by increasing the mRNA expression of genes encoding antioxidant enzymes and enhances the effectiveness of post-stroke patient therapy.


Assuntos
Antioxidantes/metabolismo , Magnetoterapia , Acidente Vascular Cerebral/terapia , Adulto , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo
16.
Molecules ; 23(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115821

RESUMO

As the current cancer treatment success rate is not sufficient, interest has grown in plants as possible sources of anti-cancer compounds. One such plant with a broad spectrum of activity is Lenourus sibiricus of the family Lamiaceae. This study investigates for the first time both the genotoxic and cytotoxic activities of TR (transformed) and AtPAP1 TR (with over-expression of transcriptional factor) root extracts of Lenourus sibiricus against various cancer cell lines (CCRF-CEM, K-562 and A549). Both tested extracts showed a cytotoxic effect on CCRF-CEM and K-562 cell lines, but strongest activity was observed for the AtPAP1 TR extract. No cytotoxic effect was observed against the A549 cell line in the tested concentration range, and it was found that both tested extracts may induce apoptosis by decreasing mitochondrial membrane potential and inducing nDNA damage lesion in the TP53 region and mtDNA in ND1 (mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1) and ND5 (mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 5) regions in K-562 and CCRF-CEM. Our results confirmed that TR and AtPAP1 TR root extracts from L. sibiricus are cytotoxic and genotoxic against different model cell lines (CCRF-CEM and K-562). However, the observed genotoxicity of both extracts needs to be confirmed by additional studies. These preclinical observations support the use of L. sibiricus with other pharmacological purposes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Arabidopsis/metabolismo , Leonurus/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Fatores de Transcrição/metabolismo , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Humanos , Hidroxibenzoatos/análise , Hidroxibenzoatos/isolamento & purificação , Células K562 , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Fatores de Transcrição/genética
17.
Postepy Hig Med Dosw (Online) ; 70(0): 522-33, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27333922

RESUMO

TLS polymerases are able to replicate damaged DNA (called translesion DNA synthesis, TLS). Their presence prevents cell death as a result of violating the integrity of the genome. In vitro, they are mutator, but in vivo are recruited by specific types of DNA damage and usually replicate them in a correct manner. The best-known TLS polymerases belong to the Y family, such as Rev1, κ, η, ι, and polymerase ζ from the B family. There are two mechanisms of TLS polymerases action: polymerase-switching model and the gap-filling model. Selection of the mechanism primarily depends on the phase of the cell cycle. The regulation of these polymerases may take place at the transcriptional level and at level of recruitment to the sites of DNA damage. In the latter case post-translational modification of proteins - ubiquitination and sumoylation, and protein-protein interactions are crucial.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Eucariotos/enzimologia , Animais , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Eucariotos/genética , Regulação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional
18.
Cell Mol Biol Lett ; 20(1): 48-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26204393

RESUMO

Human APEX nuclease 1 (APEX1) plays an important role in the repair of oxidative DNA lesions through base excision repair. It may influence the development of oxidative stress-related diseases. The aim of this study was to determine the relationship between the genotypes of the c.444 T>G (rs1130409) and c.-468 T>G (rs1760944) polymorphisms in the APEX1 gene and the occurrence of two oxidative stress-related eye diseases: keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD). The study involved 250 patients with KC, 209 patients with FECD, and 350 control subjects. All of the patients and control subjects underwent a detailed ophthalmic examination. The polymorphisms were genotyped by mismatch polymerase chain reaction restriction fragment length polymorphism (mismatch PCR-RFLP). We observed that the G/T and T/T genotypes of the c.-468 T>G polymorphism were respectively associated with a decreased occurrence of KC (OR 0.54, 95% CI 0.37-0.95; p = 0.030) and an increased occurrence of KC (OR 1.87, 95% CI 1.06-3.32; p = 0.032). None of these polymorphisms showed any association with FECD. Furthermore, no other association was observed, including haplotypes of the two polymorphisms. Our findings suggest that the c.-468 T>G polymorphism of the APEX1 gene may play a role in the pathogenesis of KC.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Distrofia Endotelial de Fuchs/genética , Ceratocone/genética , Humanos , Estresse Oxidativo
19.
Med Sci Monit ; 21: 2809-27, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388025

RESUMO

BACKGROUND Fuchs endothelial corneal dystrophy (FECD) is a corneal disease characterized by abnormalities in the Descemet membrane and the corneal endothelium. The etiology of this disease is poorly understood. An increased level of oxidative DNA damage reported in FECD corneas suggests a role of DNA base excision repair (BER) genes in its pathogenesis. In this work, we searched for the association between variation of the PARP-1, NEIL1, POLG, and XRCC1 genes and FECD occurrence. MATERIAL AND METHODS This study was conducted on 250 FECD patients and 353 controls using polymerase chain reaction-restriction fragment length polymorphism, high-resolution melting analysis, and the TaqMan® SNP Genotyping Assay. RESULTS We observed that the A/A genotype and the A allele of the c.1196A>G polymorphism of the XRCC1 gene were positively correlated with an increased FECD occurrence, whereas the G allele had the opposite effect. A weak association between the C/G genotype of the g.46438521G>C polymorphism of the NEIL1 gene and an increased incidence of FECD was also detected. Haplotypes of both polymorphisms of the XRCC1 were associated with FECD occurrence. No association of the c.2285T>C, c.-1370T>A and c.580C>T polymorphisms of the PARP-1, POLG and XRCC1 genes, respectively, with FECD occurrence was observed. CONCLUSIONS Our results suggest that the c.1196A>G polymorphism in the XRCC1 gene may be an independent genetic risk factor for FECD.


Assuntos
Reparo do DNA , Distrofia Endotelial de Fuchs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA Glicosilases/genética , DNA Polimerase gama , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
20.
Int J Mol Sci ; 16(8): 18111-28, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26251899

RESUMO

Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos da radiação , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Mutação Puntual , Células Tumorais Cultivadas , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA