Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 27(5): e13216, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001433

RESUMO

N-(2-methoxybenzyl)phenethylamines (NBOMes) are a family of potent 5-HT2A agonists containing substances emerging on the illicit drug market as a replacement for N,N-diethyllysergamide (LSD). Despite the increasing use of NBOMes for diagnostic, research and recreational purposes, only a limited number of studies have focussed on their in vivo effect. Here, we investigated pharmacokinetics, systemic toxicity, thermoregulation in individually and group-housed animals, and acute behavioural effects after subcutaneous administration of 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe; 0.2, 1, and 5 mg/kg) in Wistar rats. Drug concentration peaked 1 h after the administration of 5 mg/kg in both blood serum and brain tissue with a half-life of 1.88 and 2.28 h, respectively. According to Organisation for Economic Co-operation and Development 423 toxicity assay, the drug is classified into category 3 with a lethal dose of 300 mg/kg and an estimated LD50 value of 200 mg/kg. Histological examination of organs collected from rats injected with the lethal dose revealed subtle pathological changes, highly suggestive of acute cardiovascular arrest due to malignant arrhythmia. Altered thermoregulation after 5 mg/kg was demonstrated by reduced body temperature in individually housed rats (p < 0.01). Behavioural effects assessed by the Open Field test and Prepulse Inhibition of Startle Response revealed that the two lower doses (0.2 and 1 mg/kg) caused a reduction in locomotor activity (p < 0.01), increased anxiety (p < 0.05) and 5 mg/kg additionally impaired sensorimotor gating (p < 0.001). In summary, 25CN-NBOMe readily passes the blood-brain barrier and exhibits a moderate level of toxicity and behavioural effect comparable with other NBOMes.


Assuntos
Alucinógenos , Animais , Regulação da Temperatura Corporal , Relação Dose-Resposta a Droga , Alucinógenos/farmacologia , Fenetilaminas , Ratos , Ratos Wistar
2.
Front Pharmacol ; 14: 1120419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969854

RESUMO

Introduction: N-2-methoxy-benzylated ("NBOMe") analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b']difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine). Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.). Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug's effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes. Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.

3.
Behav Brain Res ; 421: 113713, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34906607

RESUMO

Naphyrone, also known as NRG-1, is a novel psychoactive substance (NPS), a cathinone with stimulatory properties available on the grey/illicit drug market for almost a decade. It is structurally related to infamously known powerful stimulants with the pyrovalerone structure, such as alpha-pyrrolidinovalerophenone (α-PVP) or methylenedioxypyrovalerone (MDPV) that are labeled as a cheap replacement for cocaine and other stimulants. Despite the known addictive potential of α-PVP and MDPV, there are no studies directly evaluating naphyrone's addictive potential e.g., in conditioned place preference (CPP) test or using self-administration. Therefore, our study was designed to evaluate the addictive potential in a CPP test in male Wistar rats and compare its effect to another powerful stimulant with a high addictive potential - methamphetamine. Naphyrone increased time spent in the drug-paired compartment with 5 and 20 mg/kg s.c. being significant and 10 mg/kg s.c. reaching the threshold (p = 0.07); the effect was comparable to that of methamphetamine 1.5 mg/kg s.c. The lowest dose, naphyrone 1 mg/kg s.c., had no effect on CPP. Interestingly, no dose response effect was detected. Based on these data, we are able to conclude that naphyrone has an addictive potential and may possess a significant risk to users.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Metanfetamina/farmacologia , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Transtornos Relacionados ao Uso de Substâncias , Alcaloides/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/administração & dosagem , Pentanonas/administração & dosagem , Pirrolidinas/administração & dosagem , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA