Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004738

RESUMO

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Assuntos
Antioxidantes , Citocininas , Cinetina , Reguladores de Crescimento de Plantas , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Brassica/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Purinas , Fotossíntese/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
BMC Plant Biol ; 23(1): 263, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198538

RESUMO

BACKGROUND: Chitosan, a deacetylated derivative of chitin, is one of the most preferred biopolymers for use as biostimulants and biofertilizers in organic agriculture and as elicitors to enhance the productivity of plant in vitro cultures. Valued as a non-toxic, biodegradable, and environment-friendly agent, it is widely applied to improve plant growth and yield, the content of bioactive specialized metabolites, and resistance to stress conditions and pathogens. However, the influence of chitosan on the growth-defense trade-off, particularly the interplay between steroid and triterpenoid metabolism, has not been extensively investigated. RESULTS: In this study, Calendula officinalis pot plants and hairy root cultures exposed to chitosan treatment displayed reduced biomass and altered steroid and triterpenoid metabolism. Biosynthesis and accumulation of free forms of sterols (particularly stigmasterol) were inhibited, while the content of sterol esters increased remarkably. The content of some triterpenoids (mainly free triterpenoid acids) was slightly enhanced; however, the biosynthesis of triterpenoid saponins was negatively affected. CONCLUSIONS: These results indicate that in certain plants, chitosan treatment might not positively influence the growth and metabolite production. Therefore, to avoid unexpected effects, initial studies of the conditions of chitosan treatment are recommended, including the dose and the number of chitosan applications, the type of treatment (e.g., foliar or soil), and the vegetative stage of the treated plants.


Assuntos
Calendula , Quitosana , Triterpenos , Quitosana/metabolismo , Calendula/metabolismo , Triterpenos/metabolismo , Plantas/metabolismo , Esteroides
3.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985556

RESUMO

Triterpenoids are a group of secondary plant metabolites, with a remarkable pharmacological potential, occurring in the cuticular waxes of the aerial parts of plants. The aim of this study was to analyze triterpenoid variability in the fruits and leaves of three apple cultivars during the growing season and gain new insights into their health-promoting properties and fate during juice and purée production. The identification and quantification of the compounds of interest were conducted using gas chromatography coupled with mass spectrometry. The waxes of both matrices contained similar analytes; however, their quantitative patterns varied: triterpenic acids prevailed in the fruits, while higher contents of steroids and esterified forms were observed in the leaves. The total triterpenoid content per unit area was stable during the growing season; the percentage of esters increased in the later phases of growth. Antioxidative and anti-inflammatory properties were evaluated with a series of in vitro assays. Triterpenoids were found to be the main anti-inflammatory compounds in the apples, while their impact on antioxidant capacity was minor. The apples were processed on a lab scale to obtain juices and purées. The apple purée and cloudy juice contained only some of the triterpenoids present in the raw fruit, while the clear juices were virtually free of those lipophilic compounds.


Assuntos
Malus , Triterpenos , Malus/química , Antioxidantes/análise , Triterpenos/química , Cromatografia Gasosa-Espectrometria de Massas , Frutas/química , Ceras/química
4.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677757

RESUMO

The available phytochemical characteristics of the medicinal plants and derived herbal material often lack data concerning the content of steroids (including phytosterols) and triterpenoids, that can be responsible for various beneficial properties and therapeutic effects, either directly, or as a result of synergistic action with other bioactive constituents. The aim of the present work was the analysis of the content of these compounds in herbal material (leaves, aerial parts) derived from selected medicinal plants (Cistus ladanifer, Cistus monspeliensis, Erica arborea, Globularia alypum, Pistacia lentiscus, Rhamnus alaternus), widely used in folk medicine in the Mediterranean region. Results obtained by gas chromatography-mass spectrometry (GC-MS)-targeted profiling revealed the diversity in the profiles and contents of steroids and triterpenoids in the analyzed plant material, ranging from 5.7% d.w. in E. arborea to 0.1% in G. alypum. The obtained results supplement the existing phytochemical data of the investigated medicinal plants, pointing to the E. arborea aerial parts and P. lentiscus leaves as valuable resources of phytosterols and bioactive triterpenoids.


Assuntos
Fitosteróis , Plantas Medicinais , Triterpenos , Compostos Fitoquímicos , Extratos Vegetais/química
5.
Microb Cell Fact ; 21(1): 261, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527127

RESUMO

BACKGROUND: Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS: In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS: Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.


Assuntos
Melaninas , Pseudomonas , Regiões Antárticas , Pseudomonas/genética , Pseudomonas/metabolismo , Ferro , Raízes de Plantas , Radicais Livres/metabolismo , Minerais/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628449

RESUMO

The present study investigated the changes in the content of steroids and triterpenoids in C. officinalis hairy root cultures and plants exposed to cadmium stress. The observed effects included the content and composition of analyzed groups of compounds, particularly the proportions among individual sterols (e.g., stigmasterol-to-sitosterol ratio), their ester and glycoside conjugates. The total sterol content increased in roots (by 30%) and hairy root culture (by 44%), whereas it decreased in shoots (by 15%); moreover, these effects were inversely correlated with Cd-induced growth suppression. Metabolic alterations of sterols and their forms seemed to play a greater role in the response to Cd stress in roots than in shoots. The symptoms of the competition between general metabolites (sterols) and specialized metabolites (triterpenoids) were also observed, i.e., the increase of the sterol biosynthesis parallel to the decrease of the triterpenoid content in C. officinalis plant roots and hairy root culture, and the inverse phenomenon in shoots. The similarity of the metabolic modifications observed in the present study on C. officinalis plant roots and hairy roots confirmed the possibility of application of plant in vitro cultures in initial studies for physiological research on plant response to environmental stresses.


Assuntos
Calendula , Triterpenos , Cádmio/metabolismo , Cádmio/toxicidade , Plantas/metabolismo , Esteroides/metabolismo , Esteróis/metabolismo , Triterpenos/metabolismo
7.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293029

RESUMO

The interplay between steroids and triterpenoids, compounds sharing the same biosynthetic pathway but exerting distinctive functions, is an important part of the defense strategy of plants, and includes metabolic modifications triggered by stress hormones such as jasmonic acid. Two experimental models, Calendula officinalis hairy root cultures and greenhouse cultivated plants (pot plants), were applied for the investigation of the effects of exogenously applied jasmonic acid on the biosynthesis and accumulation of steroids and triterpenoids, characterized by targeted GC-MS (gas chromatography-mass spectroscopy) metabolomic profiling. Jasmonic acid elicitation strongly increased triterpenoid saponin production in hairy root cultures (up to 86-fold) and their release to the medium (up to 533-fold), whereas the effect observed in pot plants was less remarkable (two-fold enhancement of saponin biosynthesis after a single foliar application). In both models, the increase of triterpenoid biosynthesis was coupled with hampering the biomass formation and modifying the sterol content, involving stigmasterol-to-sitosterol ratio, and the proportions between ester and glycoside conjugates. The study revealed that various organs in the same plant can react differently to jasmonic acid elicitation; hairy root cultures are a useful in vitro model to track metabolic changes, and enhanced glycosylation (of both triterpenoids and sterols) seems to be important strategy in plant defense response.


Assuntos
Calendula , Saponinas , Triterpenos , Triterpenos/farmacologia , Triterpenos/metabolismo , Sitosteroides/metabolismo , Sitosteroides/farmacologia , Estigmasterol/metabolismo , Raízes de Plantas/metabolismo , Saponinas/farmacologia , Saponinas/metabolismo , Glicosídeos/farmacologia , Esteroides/metabolismo , Ésteres/metabolismo , Hormônios/metabolismo
8.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500591

RESUMO

Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.


Assuntos
Rosa/metabolismo , Esteroides/metabolismo , Triterpenos/metabolismo , Antioxidantes/metabolismo , Frutas/metabolismo
9.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371323

RESUMO

The process of fruit ripening involves many chemical changes occurring not only in the mesocarp but also in the epicarp, including changes in the triterpenoid content of fruit cuticular waxes that can modify the susceptibility to pathogens and mechanical properties of the fruit surface. The aim of the study was the determination of the ripening-related changes in the triterpenoid content of fruit cuticular waxes of three plant species from the Rosaceae family, including rugosa rose (Rosa rugosa), black chokeberry (Aronia melanocarpa var. "Galicjanka") and apple (Malus domestica var. "Antonovka"). The triterpenoid and steroid content in chloroform-soluble cuticular waxes was determined by a GC-MS/FID method at four different phenological stages. The profile of identified compounds was rather similar in selected fruit samples with triterpenoids with ursane-, oleanane- and lupane-type carbon skeletons, prevalence of ursolic acid and the composition of steroids. Increasing accumulation of triterpenoids and steroids, as well as the progressive enrichment of the composition of these compounds in cuticular wax during fruit development, was observed. The changes in triterpenoid content resulted from modifications of metabolic pathways, particularly hydroxylation and esterification, that can alter interactions with complementary functional groups of aliphatic constituents and lead to important changes in fruit surface quality.


Assuntos
Frutas/metabolismo , Rosaceae/metabolismo , Triterpenos/metabolismo , Ceras/metabolismo , Frutas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Rosaceae/crescimento & desenvolvimento
10.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977394

RESUMO

Antarctic regions are characterized by low temperatures and strong UV radiation. This harsh environment is inhabited by psychrophilic and psychrotolerant organisms, which have developed several adaptive features. In this study, we analyzed two Antarctic bacterial strains, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. The physiological analysis of these strains revealed their potential to produce various biotechnologically valuable secondary metabolites, including surfactants, siderophores, and orange pigments. The genomic characterization of ANT_H30 and ANT_H53B allowed the identification of genes responsible for the production of carotenoids and the in silico reconstruction of the pigment biosynthesis pathways. The complex manual annotation of the bacterial genomes revealed the metabolic potential to degrade a wide variety of compounds, including xenobiotics and waste materials. Carotenoids produced by these bacteria were analyzed chromatographically, and we proved their activity as scavengers of free radicals. The quantity of crude carotenoid extracts produced at two temperatures using various media was also determined. This was a step toward the optimization of carotenoid production by Antarctic bacteria on a larger scale.


Assuntos
Carotenoides/metabolismo , Genômica , Planococcus (Bactéria)/genética , Planococcus (Bactéria)/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Genoma Bacteriano/genética , Família Multigênica/genética , Filogenia
11.
Metabolomics ; 15(5): 67, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31030265

RESUMO

INTRODUCTION: Grapevine protection is an important issue in viticulture. To reduce pesticide use, sustainable disease control strategies are proposed, including a promising alternative method based on the elicitor-triggered stimulation of the grapevine natural defense responses. However, detailed investigations are necessary to characterize the impact of such defense induction on the primary metabolism. OBJECTIVES: Our aim was to use a metabolomics approach to assess the impact on grapevine of different elicitors dependent on the salicylic acid (SA) and/or jasmonic acid (JA) pathway. For this purpose, leaves of grapevine foliar cuttings were treated with methyl jasmonate, acibenzolar-S-methyl or phosphonates. METHODS: According to the elicitor, common and discriminating metabolites were elucidated using 1H NMR measurements and principal component analysis. RESULTS: A wide range of compounds including carbohydrates, amino acids, organic acids, phenolics and amines were identified. The score plots obtained by combining PC1 versus PC2 and PC1 versus PC3 allowed a clear separation of samples, so metabolite fingerprinting showed an extensive reprogramming of primary metabolic pathways after elicitation. CONCLUSION: The methods applied were found to be accurate for the rapid determination and differential characterization of plant samples based on their metabolic composition. These investigations can be very useful because the application of plant defense stimulators is gaining greater importance as an alternative strategy to pesticides in the vineyard.


Assuntos
Metabolômica , Folhas de Planta/metabolismo , Vitis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/química , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética , Ácido Salicílico/metabolismo , Vitis/química
12.
Molecules ; 24(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405141

RESUMO

The aim of the study was the evaluation of the efficiency of selected abiotic elicitors, i.e., silver and cadmium ions, ultrasound, and UV-C irradiation, in the stimulation of triterpenoid biosynthesis, accumulation, and saponin secretion in Calendula officinalis hairy root cultures. Apart from the possible enhancement of triterpenoid production, the relationship between primary and secondary metabolism (represented respectively by sterols and pentacyclic triterpenes), modifications of the sterol compositional profile, and fluctuations in the total triterpenoid content were monitored in the performed experiments. The main phenomenon observed as a response to heavy metal treatment was the stimulation (up to 12-fold) of the secretion of saponins, accompanied by significant changes in sterol composition. Ultrasound stimulated the secretion of saponins (up to 11-fold); however, it exerted diverse influences on the triterpenoid content in hairy root tissue (stimulating or decreasing) depending on the duration of the exposure to the elicitor. UV-C radiation caused a slight increase in the content of both sterols and saponins in hairy root tissue, and stimulated saponin secretion up to 8.5-fold. The expected symptoms of the competition between the biosynthetic pathways of sterols and pentacyclic triterpenoids were less evident in reactions to abiotic stressors than those reported previously for biotic elicitors.


Assuntos
Calendula/metabolismo , Raízes de Plantas/metabolismo , Saponinas/metabolismo , Triterpenos/metabolismo , Raios Ultravioleta
13.
Molecules ; 24(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652872

RESUMO

Cuticular waxes are primarily composed of two classes of lipids: compounds derived from very-long-chain fatty acids and isoprenoids, particularly triterpenoids and steroids. Isoprenoids can occur in cuticular waxes in high amounts, dominating the mixture of aliphatic long-chain hydrocarbons, while in other plants they are found in trace concentrations. Triterpenoids occurring in fruit cuticular waxes are of interest due to their potential role in the protection against biotic stresses, including pathogen infections, and their impact on the mechanical toughness of the fruit surface, maintaining fruit integrity, and post-harvest quality. The aim of the present study was the determination of the changes in the triterpenoid profile of the fruit cuticular waxes of four plant species bearing edible berries: Vaccinium myrtillus, V. vitis-idaea, and Arbutus unedo of the Ericaceae and the edible honeysuckle Lonicera caerulea of the Caprifoliaceae. Triterpenoids were identified and quantified by GC-MS/FID (gas chromatography-mass spectrometry/flame ionization detection) at three different phenological stages: young berries, berries at the onset of ripening, and mature berries. During fruit development and maturation, the triterpenoid content in cuticular waxes displayed species-specific patterns of changes. The steroid content seemed to be directly correlated with the developmental stage, with a very typical point of transition between growth and ripening being observed in all the fruit analyzed in this study.


Assuntos
Caprifoliaceae/metabolismo , Ericaceae/metabolismo , Frutas/metabolismo , Esteroides/metabolismo , Triterpenos/metabolismo , Ceras/metabolismo
14.
Molecules ; 23(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373258

RESUMO

Apple pomace, a byproduct of juice production, is a rich source of bioactive compounds and nutrients. Supercritical fluid extraction was proposed as a method for a fast and selective extraction of hydrophobic compounds with a pharmaceutical potential from this matrix. Chromatographic analysis showed that the pomace contained significant amounts of such substances, the most abundant of them were ursolic acid, oleanolic acid, and ß-sitosterol. The solubility was chosen as a primary factor for a selection of the extraction conditions; the best results were acquired for a temperature of 80 °C and a pressure of 30 MPa. The equation proposed by Chrastil was applied for the description of the impact of the process parameters on the solubility of the analytes; the obtained values of coefficients of determination were satisfactory, despite the fact that the equation was developed for binary systems. The extraction curves obtained during the experiments were used for the description of the process kinetics using the Broken plus Intact Cell model. The impact of the temperature, pressure, and flow rate of carbon dioxide on the mass transfer phenomena was investigated. The data obtained allowed the prediction of the extraction curve for the process conducted on the larger scale.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Malus/química , Fitosteróis/química , Extratos Vegetais/química , Triterpenos/química , Dióxido de Carbono/química , Cromatografia Gasosa , Cromatografia com Fluido Supercrítico/métodos , Modelos Teóricos , Solventes
15.
J Plant Res ; 129(3): 499-512, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879930

RESUMO

Plant triterpenoids are a diverse group of secondary metabolites with wide distribution, high chemical diversity and interesting pharmacological and antimicrobial properties. The first step in the biosynthesis of all triterpenoids is the cyclization of the 2,3-oxidosqualene precursor, catalyzed by oxidosqualene cyclases (OSCs), which have characteristic product specificities. Biosynthesis and functions of pentacyclic triterpenes have been poorly studied in grapevine. In this study, we first investigated the profile of triterpenoids present in leaf cuticular waxes from eight Vitis vinifera cultivars cultivated in the Upper Rhine Valley. Further quantification of triterpenoids showed that these cultivars can be divided into two groups, characterized by high levels of lupeol (e.g., Pinot noir) or taraxerol (e.g., Gewurztraminer) respectively. We further analyzed the OSC family involved in the synthesis of pentacyclic triterpenes (called VvTTPSs) in the sequenced V. vinifera 40024 genome and found nine genes with similarity to previously characterized triterpene synthases. Phylogenetic analysis further showed that VvTTPS1-VvTTPS3 and VvTTPS5-VvTTPS9 belong to the ß-amyrin synthase and multifunctional triterpene synthase clade, whereas VvTTPS10 belongs to the lupeol synthase clade. We studied the expression of several members of the VvTTPS family following biotic and abiotic stresses in V. vinifera 40024 as well as in the eight healthy cultivars. This study further revealed that one candidate gene, VvTTPS5, which does not belong to the lupeol synthase clade, is highly expressed in lupeol-rich cultivars. VvTTPS3, VvTTPS5, VvTTPS6, VvTTPS7 and VvTTPS10 were highly upregulated by UV stress, but only VvTTPS3, VvTTPS5, VvTTPS6 and VvTTPS10 were upregulated following downy mildew and gray mold infections respectively. These results suggest differential roles of VvTTPS against environmental stresses in grape leaves.


Assuntos
Alquil e Aril Transferases/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Vitis/enzimologia , Vitis/crescimento & desenvolvimento , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Cromatografia Gasosa , França , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Solubilidade , Estresse Fisiológico/genética , Triterpenos/química , Vitis/genética , Ceras/metabolismo
17.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176893

RESUMO

Steroids and triterpenoids are compounds valued for their various biological and pharmacological properties; however, their content in medicinal and edible plants is often understudied. Flowers have been consumed since the ancient times as a part of traditional cuisine and as alternative medicines. Currently, the interest in medicinal and edible flowers is growing since contemporary consumers are incessantly seeking innovative natural sources of bioactive compounds. The aim of this report was the GC-MS (gas-chromatography-mass spectrometry) analysis of steroid and triterpenoid content in flowers, inflorescences and leaves of several plants (Berberis vulgaris L., Crataegus laevigata (Poir.) DC., Pulsatilla vulgaris Mill., Rosa rugosa Thunb., Sambucus nigra L. and Vinca minor L.), applied in herbal medicine in various forms, including isolated flowers (Flos), inflorescences (Inflorescentia) or aerial parts (Herba, i.e., combined flowers, leaves and stems). The most abundant source of triterpenoids was V. minor flowers (6.3 mg/g d.w.), whereas the steroids were prevailing in P. vulgaris flowers (1.8 and 1.1 mg/g). The profiles of triterpenoid acids and neutral triterpenoids in C. laevigata and S. nigra inflorescences were particularly diverse, involving compounds belonging to lupane-, oleanane- and ursane-type skeletons. The obtained results revealed that some flowers can constitute an abundant source of phytosterols and bioactive triterpenoids, valuable for utilization in functional foods, dietary supplements and cosmetic products.

18.
Food Chem ; 429: 136859, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463536

RESUMO

This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.99| exposed a core of 15 metabolites linked to 11 microbial taxa. Serine, oxalate, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, germanicol, sitosterol and erythrodiol correlated negatively to the abundance of most taxa, including Alternaria, Aureobasidium, Pseudopithomyces, Pseudomonas and Sphingomonas. In contrast, phenylalanine, asparagine, alanine, (epi)gallocatechin and procyanidin gallate mediated positive metabolite-OTU correlations. E. necator and A. carbonarius correlated negatively with stigmasterol and amyrin. Complex fungi-bacteria relationships ruled by Dothideomycetes and Alphaproteobacteria further suggest tight host-microbe interactions at the carposphere.


Assuntos
Microbiota , Vitis , Vinho , Vitis/química , Vinho/análise , Frutas/química , Flavonoides/análise , Fungos/metabolismo
19.
Phytochem Rev ; 11(2-3): 263-284, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23519009

RESUMO

The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.

20.
Plants (Basel) ; 11(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35567120

RESUMO

The in vitro cultures of Taxus spp. were one of the first plant in vitro systems proved to exert the positive effect of elicitation with methyl jasmonate (MeJA) on the biosynthesis of specialized metabolites. The main aim of the present study is to examine the effect of MeJA treatment on the steroid and triterpenoid content of two genetically different hairy root lines of Taxus × media, KT and ATMA. The results revealed that the two lines differed in the total content of steroids and triterpenoids (in the ATMA root line, their amounts were lower than those in the KT line by 43% and 30%, respectively), but not in the composition of these compounds. The metabolic response to elicitation with MeJA was different: in the KT root line, the content of steroids decreased by 18%, whereas it increased by 38% in the ATMA line. Several metabolic features were common, including the characteristic changes in the ratio of sitosterol to stigmasterol content, caused by the very sharp boost in stigmasterol levels, the increase in the amount of glycoside forms of sterols, as well as in triterpenoid and total phenolic content. It is the first report on modifications of the terpenoid biosynthetic pathway in Taxus hairy root cultures triggered by MeJA, concerning steroids and triterpenoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA