Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Infect Immun ; 91(5): e0001623, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37097148

RESUMO

For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.


Assuntos
Dictyostelium , Mariposas , Animais , Humanos , Virulência/genética , Streptococcus anginosus , Mariposas/microbiologia , Fatores de Virulência/genética , Modelos Animais de Doenças , Larva/microbiologia
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834725

RESUMO

Urinary tract infections are one of the most frequent bacterial diseases worldwide. UPECs are the most prominent group of bacterial strains among pathogens responsible for prompting such infections. As a group, these extra-intestinal infection-causing bacteria have developed specific features that allow them to sustain and develop in their inhabited niche of the urinary tract. In this study, we examined 118 UPEC isolates to determine their genetic background and antibiotic resistance. Moreover, we investigated correlations of these characteristics with the ability to form biofilm and to induce a general stress response. We showed that this strain collection expressed unique UPEC attributes, with the highest representation of FimH, SitA, Aer, and Sfa factors (100%, 92.5%, 75%, and 70%, respectively). According to CRA (Congo red agar) analysis, the strains particularly predisposed to biofilm formation represented 32.5% of the isolates. Those biofilm forming strains presented a significant ability to accumulate multi-resistance traits. Most notably, these strains presented a puzzling metabolic phenotype-they showed elevated basal levels of (p)ppGpp in the planktonic phase and simultaneously exhibited a shorter generation time when compared to non-biofilm-forming strains. Moreover, our virulence analysis showed these phenotypes to be crucial for the development of severe infections in the Galleria mellonella model.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Virulência/genética , Antibacterianos/farmacologia , Escherichia coli Uropatogênica/genética , Guanosina Pentafosfato , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Infecções Urinárias/microbiologia
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901878

RESUMO

Bacteriophage-based applications have a renaissance today, increasingly marking their use in industry, medicine, food processing, biotechnology, and more. However, phages are considered resistant to various harsh environmental conditions; besides, they are characterized by high intra-group variability. Phage-related contaminations may therefore pose new challenges in the future due to the wider use of phages in industry and health care. Therefore, in this review, we summarize the current knowledge of bacteriophage disinfection methods, as well as highlight new technologies and approaches. We discuss the need for systematic solutions to improve bacteriophage control, taking into account their structural and environmental diversity.


Assuntos
Bacteriófagos , Desinfecção , Biotecnologia , Manipulação de Alimentos
4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054801

RESUMO

Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.


Assuntos
Adaptação Fisiológica , Aliivibrio fischeri/fisiologia , Oceanos e Mares , Proteômica , Salinidade , Shewanella/fisiologia , Vibrio/fisiologia , Adaptação Fisiológica/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Concentração Osmolar , Osmose , Pressão Osmótica , Ligação Proteica , Proteoma/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transcrição Gênica , Vibrio/genética , Vibrio/metabolismo
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200430

RESUMO

The virus-host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage-host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA- hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Interações entre Hospedeiro e Microrganismos/genética , Transcriptoma , Proteínas de Bactérias/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Virulência
6.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072628

RESUMO

Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more "gentle" cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.


Assuntos
Bacteriófagos/fisiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/virologia , Deleção de Genes , Interações Hospedeiro-Patógeno , Regulação Viral da Expressão Gênica , Lisogenia , Mutação , Replicação Viral
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073004

RESUMO

Type II toxin-antitoxin (TA) systems are genetic elements usually encoding two proteins: a stable toxin and an antitoxin, which binds the toxin and neutralizes its toxic effect. The disturbance in the intracellular toxin and antitoxin ratio typically leads to inhibition of bacterial growth or bacterial cell death. Despite the fact that TA modules are widespread in bacteria and archaea, the biological role of these systems is ambiguous. Nevertheless, a number of studies suggests that the TA modules are engaged in such important processes as biofilm formation, stress response or virulence and maintenance of mobile genetic elements. The Dickeya dadantii 3937 strain serves as a model for pathogens causing the soft-rot disease in a wide range of angiosperm plants. Until now, several chromosome-encoded type II TA systems were identified in silico in the genome of this economically important bacterium, however so far only one of them was experimentally validated. In this study, we investigated three putative type II TA systems in D. dadantii 3937: ccdAB2Dda, phd-docDda and dhiTA, which represents a novel toxin/antitoxin superfamily. We provide an experimental proof for their functionality in vivo both in D. dadantii and Escherichia coli. Finally, we examined the prevalence of those systems across the Pectobacteriaceae family by a phylogenetic analysis.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Dickeya , Doenças das Plantas/microbiologia , Sistemas Toxina-Antitoxina , Dickeya/genética , Dickeya/metabolismo , Dickeya/patogenicidade , Regulação Bacteriana da Expressão Gênica , Virulência
8.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638525

RESUMO

Vibrio cholerae represents a constant threat to public health, causing widespread infections, especially in developing countries with a significant number of fatalities and serious complications every year. The standard treatment by oral rehydration does not eliminate the source of infection, while increasing antibiotic resistance among pathogenic V. cholerae strains makes the therapy difficult. Thus, we assessed the antibacterial potential of plant-derived phytoncides, isothiocyanates (ITC), against V. cholerae O365 strain. Sulforaphane (SFN) and 2-phenethyl isothiocyanate (PEITC) ability to inhibit bacterial growth was assessed. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that these compounds possess antibacterial activity and are also effective against cells growing in a biofilm. Tested ITC caused accumulation of stringent response alarmone, ppGpp, which indicates induction of the global stress response. It was accompanied by bacterial cytoplasm shrinkage, the inhibition of the DNA, and RNA synthesis as well as downregulation of the expression of virulence factors. Most importantly, ITC reduced the toxicity of V. cholerae in the in vitro assays (against Vero and HeLa cells) and in vivo, using Galleria mellonella larvae as an infection model. In conclusion, our data indicate that ITCs might be considered promising antibacterial agents in V. cholerae infections.


Assuntos
Antibacterianos/farmacologia , Cólera/dietoterapia , Isotiocianatos/farmacologia , Mariposas/microbiologia , Sulfóxidos/farmacologia , Vibrio cholerae/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , DNA/biossíntese , Modelos Animais de Doenças , Guanosina Tetrafosfato/biossíntese , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA/biossíntese , Células Vero , Vibrio cholerae/patogenicidade , Virulência/efeitos dos fármacos , Fatores de Virulência/biossíntese
9.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260607

RESUMO

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Modelos Biológicos , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
10.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570789

RESUMO

Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.


Assuntos
Adaptação Fisiológica , Redes Reguladoras de Genes , Shewanella/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Biodegradação Ambiental , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Análise de Sequência de RNA , Shewanella/genética
11.
Nucleic Acids Res ; 44(21): 10316-10325, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27915292

RESUMO

Gene expression regulation by the stringent response effector, ppGpp, is facilitated by DksA protein; however DksA and ppGpp can play independent roles in transcription. In Escherichia coli, the pArgX promoter which initiates the transcription of four tRNA genes was shown to be inhibited by ppGpp. Our studies on the role of DksA in pArgX regulation revealed that it can stimulate transcription by increasing the binding of RNA polymerase to the promoter and the productive transcription complex formation. However, when DksA is present together with ppGpp a severe down-regulation of promoter activity is observed. Our results indicate that DksA facilitates the effects of ppGpp to drive formation of inactive dead-end complexes formed by RNA polymerase at the ArgX promoter. In vivo, ppGpp-mediated regulation of pArgX transcription is dependent on DksA activity. The potential mechanisms of opposing pArgX regulation by ppGpp and DksA are discussed. pArgX is the first reported example of the promoter stimulated by DksA and inhibited by ppGpp in vitro when an overall inhibition occurs in the presence of both regulators. A dual role is thus proposed for DksA in the regulation of the pArgX promoter activity.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica , Iniciação da Transcrição Genética , Transcrição Gênica
12.
J Gen Virol ; 96(Pt 7): 1957-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711968

RESUMO

In Escherichia coli, the major poly(A) polymerase (PAP I) is encoded by the pcnB gene. In this report, a significant impairment of lysogenization by Shiga toxin-converting (Stx) bacteriophages (Φ24B, 933W, P22, P27 and P32) is demonstrated in host cells with a mutant pcnB gene. Moreover, lytic development of these phages after both infection and prophage induction was significantly less efficient in the pcnB mutant than in the WT host. The increase in DNA accumulation of the Stx phages was lower under conditions of defective RNA polyadenylation. Although shortly after prophage induction, the levels of mRNAs of most phage-borne early genes were higher in the pcnB mutant, at subsequent phases of the lytic development, a drastically decreased abundance of certain mRNAs, including those derived from the N, O and Q genes, was observed in PAP I-deficient cells. All of these effects observed in the pcnB cells were significantly more strongly pronounced in the Stx phages than in bacteriophage λ. Abundance of mRNA derived from the pcnB gene was drastically increased shortly (20 min) after prophage induction by mitomycin C and decreased after the next 20 min, while no such changes were observed in non-lysogenic cells treated with this antibiotic. This prophage induction-dependent transient increase in pcnB transcript may explain the polyadenylation-driven regulation of phage gene expression.


Assuntos
Colífagos/fisiologia , Escherichia coli/enzimologia , Lisogenia , Polinucleotídeo Adenililtransferase/deficiência , Prófagos/fisiologia , Replicação Viral , Colífagos/genética , Colífagos/crescimento & desenvolvimento , DNA Viral/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Poliadenilação , Prófagos/genética , Prófagos/crescimento & desenvolvimento , RNA Viral/metabolismo , Toxina Shiga/genética
13.
Plasmid ; 81: 42-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26170108

RESUMO

The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible.


Assuntos
Proteínas de Bactérias/genética , Replicação do DNA , Plasmídeos/genética , Shewanella/crescimento & desenvolvimento , Shewanella/genética , Transformação Bacteriana , Dosagem de Genes , Instabilidade Genômica , Origem de Replicação
14.
Biochim Biophys Acta ; 1829(2): 219-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23207688

RESUMO

RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA , Regiões Promotoras Genéticas , Pseudomonas putida , Transcrição Gênica , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Homologia de Sequência de Aminoácidos
15.
Antimicrob Agents Chemother ; 58(4): 2304-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492371

RESUMO

The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) depends on production of Shiga toxins, which are encoded by stx genes located in the genomes of lambdoid prophages. Efficient expression of these genes requires prophage induction and lytic development of phages. Treatment of EHEC infections is problematic due to not only the resistance of various strains to antibiotics but also the fact that many antibiotics cause prophage induction, thus resulting in high-level expression of stx genes. Here we report that E. coli growth, Shiga toxin-converting phage development, and production of the toxin by EHEC are strongly inhibited by phenethyl isothiocyanate (PEITC). We demonstrate that PEITC induces the stringent response in E. coli that is mediated by massive production of a global regulator, guanosine tetraphosphate (ppGpp). The stringent response induction arises most probably from interactions of PEITC with amino acids and from amino acid deprivation-mediated activation of ppGpp synthesis. In mutants unable to synthesize ppGpp, development of Shiga toxin-converting phages and production of Shiga toxin are significantly enhanced. Therefore, ppGpp, which appears at high levels in bacterial cells after stimulation of its production by PEITC, is a negative regulator of EHEC virulence and at the same time efficiently inhibits bacterial growth. This is in contrast to stimulation of virulence of different bacteria by this nucleotide reported previously by others.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/metabolismo , Isotiocianatos/farmacologia , Toxina Shiga/metabolismo
16.
Plasmid ; 73: 10-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24811974

RESUMO

Hfq is a nucleic acid-binding protein involved in controlling several aspects of RNA metabolism. It achieves this regulatory function by modulating the translational activity and stability of different mRNAs, generally via interactions with stress-related small regulatory sRNAs. However, besides its role in the coordination of translation of bacterial mRNA, Hfq is also a nucleoid-associated DNA-binding protein. Motivated by the above property of Hfq, we investigated if hfq gene mutation has implications for the regulation of DNA replication. Efficiency of ColE1-like (pMB1- and p15A replicons) and bacteriophage λ-derived plasmids' replication has been investigated in wild-type strain and otherwise isogenic hfq mutant of Escherichia coli. Significant differences in plasmid amount and kinetics of plasmid DNA synthesis were observed between the two tested bacterial hosts for ColE1-like replicons, but not for λ plasmid. Furthermore, ColE1-like plasmids replicated more efficiently in wild-type cells than in the hfq mutant in the early exponential phase of growth, but less efficiently in late exponential and early stationary phases. Hfq levels in the wild-type host, estimated by Western-blotting, were increased at the latter phases relative to the former one. Moreover, effects of the hfq mutation on ColE1-like plasmid replication were impaired in the absence of the rom gene, coding for a protein enhancing RNA I-RNA II interactions during the control of the replication initiation. These results are discussed in the light of a potential mechanism by which Hfq protein may influence replication of some, but not all, replicons in E. coli.


Assuntos
Bacteriófago lambda/genética , Replicação do DNA , DNA Bacteriano/genética , DNA Viral/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/deficiência , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Mutação/genética , Replicon
17.
Phytomedicine ; 132: 155845, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38964154

RESUMO

BACKGROUND: Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE: To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS: The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS: A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS: Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.

18.
J Bacteriol ; 195(22): 5007-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995636

RESUMO

The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) strains depends on the production of Shiga toxins that are encoded on lambdoid prophages. Effective production of these toxins requires prophage induction and subsequent phage replication. Previous reports indicated that lytic development of Shiga toxin-converting bacteriophages is inhibited in amino acid-starved bacteria. However, those studies demonstrated that inhibition of both phage-derived plasmid replication and production of progeny virions occurred during the stringent as well as the relaxed response to amino acid starvation, i.e., in the presence as well as the absence of high levels of ppGpp, an alarmone of the stringent response. Therefore, we asked whether ppGpp influences DNA replication and lytic development of Shiga toxin-converting bacteriophages. Lytic development of 5 such bacteriophages was tested in an E. coli wild-type strain and an isogenic mutant that does not produce ppGpp (ppGpp(0)). In the absence of ppGpp, production of progeny phages was significantly (in the range of an order of magnitude) more efficient than in wild-type cells. Such effects were observed in infected bacteria as well as after prophage induction. All tested bacteriophages formed considerably larger plaques on lawns formed by ppGpp(0) bacteria than on those formed by wild-type E. coli. The efficiency of synthesis of phage DNA and relative amount of lambdoid plasmid DNA were increased in cells devoid of ppGpp relative to bacteria containing a basal level of this nucleotide. We conclude that ppGpp negatively influences the lytic development of Shiga toxin-converting bacteriophages and that phage DNA replication efficiency is limited by the stringent control alarmone.


Assuntos
Colífagos/fisiologia , Replicação do DNA , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Prófagos/fisiologia , Replicação Viral , Colífagos/genética , Escherichia coli/metabolismo , Prófagos/genética , Toxina Shiga/genética , Ensaio de Placa Viral
19.
Microb Cell Fact ; 12: 55, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23714207

RESUMO

Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed.


Assuntos
Carbono/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Modelos Biológicos , Ativação Transcricional
20.
Mutat Res ; 731(1-2): 99-106, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198407

RESUMO

Recent studies indicated that there is a direct link between central carbon metabolism (CCM) and initiation and elongation of DNA replication in Eschericha coli. Namely, effects of certain mutations in genes coding for replication proteins (dnaA, dnaB, dnaE, dnaG, and dnaN) could be specifically suppressed by deletions of some genes, whose products are involved in CCM reactions (pta, ackA, pgi, tktB, and gpmA). Here, we demonstrate that the link between CCM and DNA synthesis can be extended to the DNA replication fidelity, as we report changes of the mutator phenotypes of E. coli dnaQ49 and dnaX36 mutants (either suppression or enhancement) by dysfunctions of zwf, pta, ackA, acnB, and icdA genes. Overexpression of appropriate wild-type CCM genes in double mutants resulted in reversions to the initial mutator phenotypes, indicating that the effects were specific. Moreover, the observed suppression and enhancement effects were not caused by changes in bacterial growth rates. These results suggest that there is a genetic correlation between CCM and DNA replication fidelity in E. coli, apart from the already documented link between CCM and DNA replication initiation control and elongation efficiency.


Assuntos
Carbono/metabolismo , Replicação do DNA , Escherichia coli/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Polimerase III/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA