Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0410923, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162505

RESUMO

The human gut microbiome is crucial in health and disease. Longitudinal studies are becoming increasingly important compared to traditional cross-sectional approaches, as precision medicine and individualized interventions are coming to the forefront. Investigating the temporal dynamics of the microbiome is essential for comprehending its function and impact on health. This knowledge has implications for targeted therapeutic strategies, such as personalized diets or probiotic therapy. In this study, we focused on developing and implementing methods specifically designed for analyzing gut microbiome time series. Our statistical framework provides researchers with tools to examine the temporal behavior of the gut microbiome. Key features of our framework include statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses to identify groups of bacteria with similar temporal patterns. We analyzed dense amplicon sequencing time series from four generally healthy subjects. Using our developed statistical framework, we analyzed both the overall community dynamics and the behavior of individual bacterial species. We showed six longitudinal regimes within the gut microbiome and discussed their features. Additionally, we explored whether specific bacterial clusters undergo similar fluctuations, suggesting potential functional relationships and interactions within the microbiome. Our development of specialized methods for analyzing human gut microbiome time series significantly enhances the understanding of its dynamic nature and implications for human health. The guidelines and tools provided by our framework support scientists in studying the complex dynamics of the gut microbiome, fostering further research and advancements in microbiome analysis. The gut microbiome is integral to human health, influencing various diseases. Longitudinal studies offer deeper insights into its temporal dynamics compared to cross-sectional approaches. In this study, we developed a statistical framework for analyzing the time series of the human gut microbiome. This framework provides robust tools for examining microbial community dynamics over time. It includes statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses. Our approach significantly enhances the methodologies available to researchers, promoting further exploration and innovation in microbiome analysis. IMPORTANCE: This project developed innovative methods to analyze gut microbiome time series data, offering fresh insights into its dynamic nature. Unlike many studies that focus on static snapshots, we found that the healthy gut microbiome is predictably stable over time, with only a small subset of bacteria showing significant changes. By identifying groups of bacteria with diverse temporal behaviors and clusters that change together, we pave the way for more effective probiotic therapies and dietary interventions, addressing the overlooked dynamic aspects of gut microbiome changes.

2.
mSystems ; 8(2): e0117822, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010293

RESUMO

Comprehensive protein function annotation is essential for understanding microbiome-related disease mechanisms in the host organisms. However, a large portion of human gut microbial proteins lack functional annotation. Here, we have developed a new metagenome analysis workflow integrating de novo genome reconstruction, taxonomic profiling, and deep learning-based functional annotations from DeepFRI. This is the first approach to apply deep learning-based functional annotations in metagenomics. We validate DeepFRI functional annotations by comparing them to orthology-based annotations from eggNOG on a set of 1,070 infant metagenomes from the DIABIMMUNE cohort. Using this workflow, we generated a sequence catalogue of 1.9 million nonredundant microbial genes. The functional annotations revealed 70% concordance between Gene Ontology annotations predicted by DeepFRI and eggNOG. DeepFRI improved the annotation coverage, with 99% of the gene catalogue obtaining Gene Ontology molecular function annotations, although they are less specific than those from eggNOG. Additionally, we constructed pangenomes in a reference-free manner using high-quality metagenome-assembled genomes (MAGs) and analyzed the associated annotations. eggNOG annotated more genes on well-studied organisms, such as Escherichia coli, while DeepFRI was less sensitive to taxa. Further, we show that DeepFRI provides additional annotations in comparison to the previous DIABIMMUNE studies. This workflow will contribute to novel understanding of the functional signature of the human gut microbiome in health and disease as well as guiding future metagenomics studies. IMPORTANCE The past decade has seen advancement in high-throughput sequencing technologies resulting in rapid accumulation of genomic data from microbial communities. While this growth in sequence data and gene discovery is impressive, the majority of microbial gene functions remain uncharacterized. The coverage of functional information coming from either experimental sources or inferences is low. To solve these challenges, we have developed a new workflow to computationally assemble microbial genomes and annotate the genes using a deep learning-based model DeepFRI. This improved microbial gene annotation coverage to 1.9 million metagenome-assembled genes, representing 99% of the assembled genes, which is a significant improvement compared to 12% Gene Ontology term annotation coverage by commonly used orthology-based approaches. Importantly, the workflow supports pangenome reconstruction in a reference-free manner, allowing us to analyze the functional potential of individual bacterial species. We therefore propose this alternative approach combining deep-learning functional predictions with the commonly used orthology-based annotations as one that could help us uncover novel functions observed in metagenomic microbiome studies.


Assuntos
Aprendizado Profundo , Microbiota , Humanos , Metagenoma/genética , Anotação de Sequência Molecular , Microbiota/genética , Genoma Microbiano
3.
Nat Commun ; 14(1): 2351, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100781

RESUMO

For the past half-century, structural biologists relied on the notion that similar protein sequences give rise to similar structures and functions. While this assumption has driven research to explore certain parts of the protein universe, it disregards spaces that don't rely on this assumption. Here we explore areas of the protein universe where similar protein functions can be achieved by different sequences and different structures. We predict ~200,000 structures for diverse protein sequences from 1,003 representative genomes across the microbial tree of life and annotate them functionally on a per-residue basis. Structure prediction is accomplished using the World Community Grid, a large-scale citizen science initiative. The resulting database of structural models is complementary to the AlphaFold database, with regards to domains of life as well as sequence diversity and sequence length. We identify 148 novel folds and describe examples where we map specific functions to structural motifs. We also show that the structural space is continuous and largely saturated, highlighting the need for a shift in focus across all branches of biology, from obtaining structures to putting them into context and from sequence-based to sequence-structure-function based meta-omics analyses.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/metabolismo , Sequência de Aminoácidos , Relação Estrutura-Atividade , Bases de Dados de Proteínas
4.
Front Microbiol ; 13: 951044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188001

RESUMO

In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of Dietzia spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to Actinotalea, not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in Actinotalea that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA