Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Med ; 30(1): 62, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760666

RESUMO

Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).


Assuntos
Processamento Alternativo , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Mutação , Animais , Regulação Neoplásica da Expressão Gênica , Epigênese Genética , Spliceossomos/metabolismo , Spliceossomos/genética , Transdução de Sinais/genética
2.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499346

RESUMO

The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.


Assuntos
Estresse Oxidativo , Receptores de Hidrocarboneto Arílico/metabolismo , Dermatopatias/metabolismo , Fenômenos Fisiológicos da Pele , Triptofano/química , Animais , Carbazóis/química , Cloracne/tratamento farmacológico , Cloracne/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Humanos , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Ácido Cinurênico/farmacologia , Cinurenina/farmacologia , Ligantes , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Microbiota , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/microbiologia , Dermatopatias/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Vitiligo/tratamento farmacológico , Vitiligo/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114713

RESUMO

Tryptophan metabolites: kynurenine (KYN), kynurenic acid (KYNA) and 6-formylindolo[3,2-b]carbazole (FICZ) are considered aryl hydrocarbon receptor (AhR) ligands. AhR is mainly expressed in barrier tissues, including skin, and is involved in various physiological and pathological processes in skin. We studied the effect of KYN, KYNA and FICZ on melanocyte and melanoma A375 and RPMI7951 cell toxicity, proliferation and cell death. KYN and FICZ inhibited DNA synthesis in both melanoma cell lines, but RPMI7951 cells were more resistant to pharmacological treatment. Tested compounds were toxic to melanoma cells but not to normal human adult melanocytes. Changes in the protein level of cyclin D1, CDK4 and retinoblastoma tumor suppressor protein (Rb) phosphorylation revealed different mechanisms of action of individual AhR ligands. Importantly, all tryptophan metabolites induced necrosis, but only KYNA and FICZ promoted apoptosis in melanoma A375 cells. This effect was not observed in RPMI7951 cells. KYN, KYNA and FICZ in higher concentrations inhibited the protein level of AhR but did not affect the gene expression. To conclude, despite belonging to the group of AhR ligands, KYN, KYNA and FICZ exerted different effects on proliferation, toxicity and induction of cell death in melanoma cells in vitro.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carbazóis/farmacologia , Ácido Cinurênico/farmacologia , Cinurenina/farmacologia , Melanoma/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo
4.
PLoS One ; 17(10): e0276674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282861

RESUMO

OBJECTIVES: Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease with heterogeneous clinical course. Recent studies revealed a link between NOTCH1 mutation and the overexpression of MYC and MYC-related genes involved in ribosome biogenesis and protein biosynthesis, such as nucleophosmin-1 (NPM1), in CLL cells. In the present study, we aim to evaluate the impact of the NOTCH1 mutation on the MYC and MYC induced NPM1 expression in CLL cells via quantification of their transcripts. METHODS: Using qRT-PCR, we analyzed the levels of MYC and three main NPM1 splice variants in 214 samples collected from CLL patients. We assessed the impact of each splice variant on CLL prognostic markers, including the IGHV, TP53, NOTCH1, SF3B1, and MYD88 mutational status, cytogenetic aberrations, and laboratory features. RESULTS: Significantly higher levels of NPM1.R1 transcripts in patients with unmutated compared to mutated IGHV status were found. The median time to first treatment (TTFT) in patients with a high level of NPM1.R1 was significantly shorter compared to the group with low NPM1.R1 levels (1.5 vs 33 months, p = 0.0002). Moreover, in Multivariate Cox Proportional Hazard Regression Model NPM1.R1 splice variant provided an independent prognostic value for TTFT. CONCLUSION: In conclusion, our study indicates the prognostic significance of the level of NPM1.R1 expression and suggests the importance of splicing alterations in the pathogenesis of CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Fator 88 de Diferenciação Mieloide/genética , Processamento Alternativo , Mutação , Prognóstico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
BMC Med Genomics ; 14(1): 76, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691695

RESUMO

BACKGROUND: 16p11.2 microdeletion is a known chromosomal anomaly associated mainly with neurocognitive developmental delay, predisposition to obesity, and variable dysmorphism. Although this deletion is relatively rare among the general population, it is one of the serious known genetic aetiologies of obesity and autism spectrum disorder. CASE PRESENTATION: This study presents three cases of deletions within the 16p11.2 region. Every child had mild variable craniofacial abnormalities, hand or foot anomalies and developmental and language delays. The first proband had obesity, epilepsy, moderate intellectual disability, aphasia, motor delay, hyperinsulinism, and café au lait spots. The second proband suffered from cardiac, pulmonary, and haematological problems. The third proband had motor and language delays, bronchial asthma, and umbilical hernia. Although each patient presented some features of the syndrome, the children differed in terms of their clinical pictures. Genetic diagnosis of 16p11.2 microdeletion syndrome was made in children at different ages based on multiplex ligation probe-dependent amplification analysis and/or microarray methods. CONCLUSIONS: Our reports allow us to analyse and better understand the biology of 16p11.2 microdeletion throughout development. However, the variability of presented cases supports the alternate conclusion to this presented in available literature regarding 16p11.2 deletion, as we observed no direct cause-and-effect genotype/phenotype relationships. The reported cases indicate the key role of the interdisciplinary approach in 16p11.2 deletion diagnostics. The care of patients with this anomaly is based on regular health assessment and adjustment of nervous system development therapy.


Assuntos
Transtorno do Espectro Autista , Criança , Pré-Escolar , Transtornos Cromossômicos , Humanos , Deficiência Intelectual , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA