Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615902

RESUMO

Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.

2.
J Eukaryot Microbiol ; 65(6): 902-912, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29779265

RESUMO

Ciliates of the genus Gruberia are poorly studied. Consequently, most species lack detailed morphological descriptions, and all gene sequences in GenBank are not classified at the species level. In this study, a detailed morphological description of a population of G. lanceolata from Brazil is presented, based on live and protargol-stained organisms. We also present the 18S rRNA gene sequence and the phylogenetic position of this species. The primary characteristics of G. lanceolata from the Maricá Lagoon are as follows: an elongate fusiform body 280-870 × 40-160 µm in size; rosy cortical granules; a peristome occupying approximately 1/3-1/2 of body length; an adoral zone comprising 115-330 membranelles; a paroral membrane in 35-50 fragments; and a moniliform macronucleus with 11-16 nodules. Based on our observations and data from pertinent literature, we suggest G. beninensis to be a junior synonym of G. lanceolata.


Assuntos
Cilióforos/classificação , Cilióforos/citologia , Filogenia , Sequência de Bases , Brasil , Cilióforos/genética , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Macronúcleo , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Especificidade da Espécie
3.
Appl Environ Microbiol ; 82(24): 7236-7247, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742680

RESUMO

In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium "Candidatus Bealeia paramacronuclearis" occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, "Candidatus Fokinia cryptica," whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that "Candidatus Bealeia paramacronuclearis" clusters with the so-called "basal" Rickettsiales, and "Candidatus Fokinia cryptica" belongs to "Candidatus Midichloriaceae." We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and "Candidatus Midichloriaceae" (RAM clade), and the other represented by "basal Rickettsiales," including "Candidatus Bealeia paramacronuclearis." Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise "basal Rickettsiales" to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family "Candidatus Hepatincolaceae" and redefine the family Holosporaceae IMPORTANCE: In this paper, we provide the characterization of two novel bacterial symbionts inhabiting the same Paramecium host (Ciliophora, Alveolata). Both symbionts belong to "traditional" Rickettsiales, one representing a new species of the genus "Candidatus Fokinia" ("Candidatus Midichloriaceae"), and the other representing a new genus of a "basal" Rickettsiales According to newly characterized sequences and to a critical revision of recent literature, we propose a taxonomic reorganization of "traditional" Rickettsiales that we split into two orders: Rickettsiales sensu stricto and Holosporales ord. nov. This work represents a critical revision, including new records of a group of symbionts frequently occurring in protists and whose biodiversity is still largely underestimated.


Assuntos
Alphaproteobacteria/isolamento & purificação , Citoplasma/microbiologia , Paramecium/microbiologia , Rickettsiaceae/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , Paramecium/fisiologia , Filogenia , Rickettsiaceae/classificação , Rickettsiaceae/genética , Rickettsiaceae/fisiologia , Simbiose
4.
Front Microbiol ; 11: 1425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733401

RESUMO

"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.

5.
PeerJ ; 8: e8977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351785

RESUMO

Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.

6.
Protist ; 171(2): 125716, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086115

RESUMO

The genus Parablepharisma Jankowski, 2007 at present includes five species, most of which have not been studied in detail, therefore phylogenetic affinities remained uninvestigated up to now. Parablepharisma is traditionally placed within Heterotrichea based on insufficient existing morphological data, and there are no available Parablepharisma gene sequences in molecular databases to support this placement. This work presents an 18S rDNA-based phylogeny of P. bacteriophora (Kahl, 1932) Jankowski, 2007 and P. brasiliensis sp. nov. We also provide a redescription of P. bacteriophora and P. chlamydophorum (Kahl, 1932) Jankowski, 2007 based on live morphological observations combined with silver impregnation and scanning and transmission electron microscopy. According to characters such as macro- and micronucleus number, the position of the ectosymbiotic bacteria, and the presence/absence of caudal cilia, two new species are described, i.e. P. granulata sp. nov. and P. brasiliensis sp. nov. In addition, we establish Kahlium gen. nov. to include P. chlamydophorum, which has a segmented anterior paroral portion and a twisted posterior paroral section as diagnostic features. To include Parablepharisma and Kahlium gen. nov., we propose Parablepharismidae fam. nov. According to our phylogenetic analyses, Parablepharisma belongs to SAL (Spirotrichea, Armophorea, Litostomatea), being a sister group of Cariacotrichea.


Assuntos
Cilióforos , Filogenia , Cilióforos/classificação , Cilióforos/citologia , Cilióforos/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
7.
PLoS One ; 11(1): e0145743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731731

RESUMO

Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 µm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.


Assuntos
Alphaproteobacteria/fisiologia , Paramecium/microbiologia , Simbiose , Águas Residuárias/parasitologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Paramecium/classificação , Filogenia , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
Sci Rep ; 3: 3305, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24264310

RESUMO

Among the bacterial symbionts harbored by the model organism Paramecium, many still lack a recent investigation that includes a molecular characterization. The genus Lyticum consists of two species of large-sized bacteria displaying numerous flagella, despite their inability to move inside their hosts' cytoplasm. We present a multidisciplinary redescription of both species, using the deposited type strains as well as newly collected material. On the basis of 16S rRNA gene sequences, we assigned Lyticum to the order Rickettsiales, that is intensely studied because of its pathogenic representatives and its position as the extant group most closely related to the mitochondrial ancestor. We provide conclusive proofs that at least some Rickettsiales possess actual flagella, a feature that has been recently predicted from genomic data but never confirmed. We give support to the hypothesis that the mitochondrial ancestor could have been flagellated, and provide the basis for further studies on these ciliate endosymbionts.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/ultraestrutura , Paramecium/microbiologia , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA