Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241254

RESUMO

The study aimed to determine the influence of shear stress during real-life industrial processes such as compression molding and injection molding to different cavities on the crystallization of the isotactic polypropylene nucleated with a novel silsesquioxane-based ß-nucleating agent. Octakis(N2,N6-dicyclohexyl-4-(3-(dimethylsiloxy)propyl)naphthalene-2,6-dicarboxamido)octasilsesquioxane (SF-B01) is a highly effective nucleating agent (NA) based on the hybrid organic-inorganic silsesquioxane cage. The samples containing various amounts of the silsesquioxane-based and commercial iPP ß-nucleants (0.01-0.5 wt%) were prepared by compression molding and injection molding, including forming in the cavities with different thicknesses. The study of the thermal properties, morphology, and mechanical properties of iPP samples allows for obtaining comprehensive information about the efficiency of silsesquioxane-based NA in shearing conditions during the forming. As a reference sample, iPP nucleated by commercial ß-NA (namely N2,N6-dicyclohexylnaphthalene-2,6-dicarboxamide, NU-100) was used. The static tensile test assessed the mechanical properties of pure and nucleated iPP samples formed in different shearing conditions. Variations of the ß-nucleation efficiency of the silsesquioxane-based and commercial nucleating agents caused by shear forces accompanying the crystallization process during forming were evaluated by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The investigations of changes in the mechanism of interactions between silsesquioxane and commercial nucleating agents were supplemented by rheological analysis of crystallization. It was found that despite the differences in the chemical structure and solubility of the two nucleating agents, they influence the formation of the hexagonal iPP phase in a similar way, taking into consideration the shearing and cooling conditions.

2.
Materials (Basel) ; 13(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256208

RESUMO

Two phosphorus-containing cage-like silsesquioxane derivatives were synthesized as reactive or additive flame retardants for epoxy resin. The silsesquioxanes were obtained via an epoxide ring-opening reaction using a 10-hydroxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPA). In one derivative containing in its structure 4 glycidoxypropyl and 4 phosphate groups, denoted as 4P4GS, only half of the epoxy rings was reacted with phosphate to obtain a reactive additive, while in the second derivative containing 8 phosphate groups, denoted as 8PS, all epoxy groups were converted, thus an additive modifier was obtained. The silsesquioxanes containing phosphorus atoms and the reactive phosphorus-free silsesquioxane derivative (octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (8GS)) were used to prepare hybrid materials based on epoxy resin. To compare the impact of the structure of silsesquioxane derivatives on the properties of hybrid materials, a number of samples containing 1, 5, and 10% of the modifiers making a series of epoxy materials containing additive or reactive modifiers, were obtained. The modified epoxies were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), nanoindentation, water contact angle, and cone calorimetry tests to assess the effects of the modifier structure on the physicochemical properties of the investigated materials.

3.
Polymers (Basel) ; 10(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30960943

RESUMO

A novel group of silsesquioxane derivatives, which are siloxane-silsesquioxane resins (S4SQ), was for the first time examined as possible flame retardants in polypropylene (PP) materials. Thermal stability of the PP/S4SQ composites compared to the S4SQ resins and neat PP was estimated using thermogravimetric (TG) analysis under nitrogen and in air atmosphere. The effects of the non-functionalized and n-alkyl-functionalized siloxane-silsesquioxane resins on thermostability and flame retardancy of PP materials were also evaluated by thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) and by cone calorimeter tests. The results revealed that the functionalized S4SQ resins may form a continuous ceramic layer on the material surface during its combustion, which improves both thermal stability and flame retardancy of the PP materials. This beneficial effect was observed especially when small amounts of the S4SQ fillers were applied. The performed analyses allowed us to propose a possible mechanism for the degradation of the siloxane-silsesquioxane resins, as well as to explain their possible role during the combustion of the PP/S4SQ composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA