Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38991711

RESUMO

INTRODUCTION: Pathogenic variants in the gene encoding for BMPR2 are a major genetic risk factor for heritable pulmonary arterial hypertension (PAH). Due to incomplete penetrance, deep-phenotyping of unaffected carriers (UCs) of a pathogenic BMPR2 variant through multi-modality screening may aid in early diagnosis and identify susceptibility traits for future development of PAH. METHODS: 28 UCs (44±16 years, 57% female) and 21 healthy controls (43±18 years, 48% female) underwent annual screening, including cardiac magnetic resonance imaging (cMRI), transthoracic echocardiography (TTE), cardiopulmonary exercise testing (CPET) and right heart catheterization (RHC). Right ventricular (RV) pressure-volume (PV) loops were constructed to assess load independent contractility and compared with a healthy control group. A transgenic Bmpr2Δ71Ex1/+ rat model was employed to validate findings in humans. RESULTS: UCs had lower indexed right ventricular end-diastolic (80±18 mL·m-2 versus 64±14 mL·m-2;p= 0.003), end-systolic (34±11 mL·m-2 versus 27±8 mL·m-2;p=0.024) and left end-diastolic volumes (69±14 mL·m-2 versus 60±11 mL·m-2;p=0.019) than control subjects. Bmpr2Δ71Ex1/+ rats were also observed to have smaller cardiac volumes than WT rats. PV loop analysis showed significantly higher afterload (Ea) (0.15±0.06 versus 0.27±0.08; p<0.001), and end-systolic elastance (Ees) 0.28±0.07 versus 0.35±0.10; p=0.047) in addition to lower RV-pulmonary artery coupling (Ees/Ea)(2.24±1.03 versus 1.36±0.37; p=0.006) in UCs. During the 4-year follow-up period, two UCs developed PAH with normal NT-proBNP and TTE indices at diagnosis. CONCLUSION: Unaffected BMPR2 mutation carriers have an altered cardiac phenotype mimicked in Bmpr2Δ71Ex1/+ transgenic rats. Future efforts in establishing an effective screening protocol for individuals at risk for developing PAH warrants longer follow-up periods.

2.
J Biol Chem ; 293(13): 4940-4951, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378846

RESUMO

In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/biossíntese , Análise de Sequência de RNA , Biópsia/métodos , Proteína HMGB3/biossíntese , Proteína HMGB3/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética
3.
PLoS One ; 17(10): e0274289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301874

RESUMO

While the majority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical manifestations is not understood. Here, we carried out TCR sequencing and conducted comparative analyses of TCR repertoires between children with MIS-C (n = 12) and mild (n = 8) COVID-19. We compared these repertoires with unexposed individuals (samples collected pre-COVID-19 pandemic: n = 8) and with the Adaptive Biotechnologies MIRA dataset, which includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the repertoires of children with MIS-C are characterised by the expansion of TRBV11-2 chains with high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking SARS-CoV-2 specificity, defines MIS-C in children.


Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Criança , Humanos , SARS-CoV-2 , COVID-19/genética , Pandemias , Receptores de Antígenos de Linfócitos T/genética , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/genética
4.
Dalton Trans ; 46(25): 8157-8166, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607997

RESUMO

The investigation of the linkage isomers of biologically essential and kinetically labile metal complexes in aqueous solutions poses a challenge, as these microspecies cannot be separately studied. Therefore, derivatives are commonly used to initially determine the stability or spectral characteristics of at least one of the isomers. Here we directly detect the isomers, describe the metal ion coordination sphere, speciation and thermodynamic parameters by a synergistic application of temperature dependent EPR and CD spectroscopic measurements in copper(ii)-dipeptide systems including His-Gly and His-Ala ligands. The ΔH = (-23 ± 4) kJ mol-1 value of the standard enthalpy change corresponding to the peptide-type to histamine-type isomerisation equilibrium of the [CuL]+ complex was corroborated by several techniques. The preferential coordination of the side-chains was observed at lower temperatures, whereas, metal-binding of the backbone atoms became favourable upon increasing temperature. This study exemplifies the necessity of using temperature dependent multiple methodologies for a reliable description of similar systems for upstream applications.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/isolamento & purificação , Cobre/química , Dipeptídeos/química , Alanina/química , Complexos de Coordenação/síntese química , Glicina/química , Histidina/química , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Temperatura , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA