RESUMO
We demonstrated the metal accumulation potential of Amaranthus retorflexus, a European weed species, both in moderately and strongly metal-contaminated sites. Metal accumulation in roots, stems, and leaves were studied. We also calculated the bioaccumulation factor (BAF), and translocation factor (TF) values to quantify the metal accumulation, and translocation between plant organs. Our findings indicated that metal accumulation correlated with metal concentration; that is plant organs accumulated higher concentration of metals in the contaminated area than in the control one. We found that the concentrations of Ba, Mn, Sr and Zn were the highest in leaves, and Al, Cr, Cu, Fe and Pb in roots. High BAF value was found for Sr in all studied areas, indicating this metal's high accumulation potential of Amaranthus retorflexus. High TF values were found for Al, Ba, Cu, Fe, Mn, Sr and Zn; these metals were successfully transported to aboveground plant organs. We demonstrated that A. retroflexus, a fast-growing, rapidly spreading weed in Europe, was especially useful for heavy metal phytoremediation and phytoextraction.
Assuntos
Amaranthus , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Plantas Daninhas , Espécies Introduzidas , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Europa (Continente) , Raízes de Plantas/química , SoloRESUMO
Urbanization has a significant impact on abiotic and biotic factors in nature. We examined the morphometric characters of four carabid species (Abax parallelepipedus, Carabus scheidleri, Carabus violaceus, and Pterostichus oblongopunctatus) along urbanization gradients in and around the cities of Vienna (Austria) and Debrecen (Hungary). We found significant differences among urban, suburban, and rural areas in the parameters of antennomers, the maxillary palpus, the labial palpus, and the length of the tibia and the elytra of the carabids studied. We also found significant differences between males and females based on the parameters of antennomers, the maxillary palpus, the labial palpus, the femur, and the elytra. An interaction between urbanization and sex was found in the case of antennomers, the maxillary palpus, the labial palpus, the femur, and the elytra. Our findings suggested that in the cases of species from Carabini tribus the parameters of antennomers, the maxillary palpus, and the elytra could be useful for assessing the effects of urbanization because these morphometric characters responded sensitively to the environmental stress, whereas the most useful parameters are those of antennomers and the tibia for the species of Pterostichini tribus. Our findings also revealed that females are more sensitive to environmental stress than males.
Assuntos
Besouros/anatomia & histologia , Urbanização , Animais , Áustria , Cidades , Feminino , Hungria , Masculino , Especificidade da EspécieRESUMO
Widespread campaigns on forest restoration and various tree planting actions lower the awareness of the importance of grasslands for carbon sequestration and biodiversity conservation. Even lower attention is given to the conservation of biodiversity and ecosystem functioning in remnants of ancient, so-called pristine grasslands. Pristine grasslands generally harbour high biodiversity, and even small patches can act as important refuges for many plant and animal species in urbanised or agricultural landscapes. Spontaneous succession of grassland is frequently viewed as a cost-effective tool for grassland restoration, but its applicability is strongly dependent on many local to landscape-scale factors, and the recovery is often slow. It is therefore essential to monitor the success of grassland restoration projects that rely on spontaneous succession. We compared the species diversity and functional attributes of pristine and recovered grasslands by studying the taxonomic and functional diversity in thirteen (8 pristine and 5 recovered) loess steppic grasslands using differently sized sampling plots from 0.01 to 100 m2. Our results indicate that there are remarkable differences in taxonomic and functional diversity between pristine and recovered grasslands. We also found that during secondary succession there is a likely functional saturation of the species assembly in the first few decades of recovery, and while patterns and structure of recovered grasslands became quite similar to those of pristine grasslands, species richness and diversity still remained much lower. Pristine grasslands support considerable plant diversity, and species composition is slow to recover if destroyed by agricultural land use. This underlines the importance of preserving existing pristine grassland remnants, which might serve as sources of species for future restoration measures.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Agricultura , Sequestro de CarbonoRESUMO
The amount of dust deposited on tree leaves is a cost-effective indicator of air quality. Our aim was to explore the leaf surface deposition, and chlorophyll content of leaves along a road section that started at an intersection, and ended in a less disturbed suburban area in Debrecen, Hungary. We also assessed the impact of meteorological conditions on the amount of deposited dust. Leaf samples were collected in July, and September 2022 from Celtis occidentalis, a frequent species in green urban areas of Debrecen. We found a significant negative correlation between dust deposition, and the distance from the intersection in July. In September, dust deposition decreased considerably compared to July, due to rainfall before the second sampling. Surprisingly, we found a positive correlation between dust deposition and chlorophyll content in July. Our findings suggest that dust deposition on leaves serves as a reliable indicator of traffic intensity, because the excess dust caused by the proximity of vehicle traffic can be detected on the leaf surface. Although, rainfall can disrupt the patterns in dust deposition that have developed over an extended period through wash-off and resuspension. Hence, it is advisable to consider these effects while selecting the sampling time and evaluating the results.
Assuntos
Clorofila , Poeira , Monitoramento Ambiental , Material Particulado , Folhas de Planta , Árvores , Material Particulado/análise , Clorofila/análise , Folhas de Planta/química , Hungria , Monitoramento Ambiental/métodos , Poeira/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , CidadesRESUMO
We selected 15 sheep-grazed sand pastures along a gradient of increasing grazing intensity to study the fine-scale patterns of main biomass fractions (green biomass, litter) and that of plant species and functional groups (life forms and social behaviour types). We classified them into five grazing intensity levels based on stocking density, proximity to drinking and resting places and the number of faeces. We aimed to answer the following questions: (i) How does increasing intensity of sheep grazing affect the amount of green biomass, the species richness and their relationship in sand pastures? (ii) How does increasing intensity of sheep grazing affect the biomass of perennial and short-lived graminoids and forbs? (iii) How does the disturbance value-expressed in the biomass ratio of disturbance-tolerant and ruderal species-change along the gradient of grazing intensity? A unimodal relationship between green biomass and species richness was detected; however, the ordination (canonical correspondence analysis, CCA) showed no clustering of pastures subjected to the same levels of grazing intensity. Along the grazing intensity gradient we found an increasing trend in species richness and significant differences in green biomass (decreasing trend), litter (decreasing trend), graminoids (decreasing trend) and short-lived forbs (increasing trend). We found an increasing amount of disturbance-tolerant and ruderal species with increasing grazing intensity. We suggest that we might need to use multiple scales for sampling and a fine-scale assessment of grazing intensity. Our findings might be instructive for pastures in densely populated regions, which are prone to the encroachment of disturbance-tolerant and ruderal species.
RESUMO
One of the most important and most easily measurable physical characteristics of plant seeds is their weight, which influences and indicates crucial ecological processes. Seed weight affects spatial and temporal dispersibility, and can also influence seed predation and the germination, growth and survival of seedlings. Providing trait data for species missing from international databases is key to promote studies that advance our understanding of the functioning of plant communities and ecosystems, which is an essential issue in the face of the global climate change and biodiversity loss. Compared to species from Western and Northwestern Europe, those with an Eastern or Central European centre of distribution are underrepresented in most international trait databases. Therefore, the creation of specific trait databases is key to help regional studies. In this respect, it is important not only to collect fresh seeds for weight measurements, but also to measure and process data of seeds preserved in collections and make them available to the broader scientific community. In this data paper we provide seed weight data to fill in missing trait data of plant species of Central and Eastern Europe. Our dataset includes weight measurement for 281 taxa of the Central European flora including also some cultivated and exotic species. The seeds were collected between 1971 and 2021 mostly in Central Europe. One part of the measured seeds was collected in the last decade, the other part is from an older seed collection, but all seeds were measured recently. For each species, we collected a minimum of 3 × 100 intact seeds, if possible. The seeds were air-dried at room temperature (approximately 21 °C and 50% relative humidity) for at least two weeks and measured with an accuracy of 0.001 g using an analytical balance. The thousand-seed weights reported here were calculated based on the measured values. Our goal for the future is to incorporate the seed weight data reported here in a regional database (Pannonian Database of Plant Traits - PADAPT) that gathers plant traits and other plant characteristics for the Pannonian flora. The data presented here will facilitate trait-based analyses of the flora and vegetation of Central Europe.
RESUMO
Amphibians, particularly frogs and toads, are increasingly used as bioindicators of contaminant accumulation in pollution studies. We developed an analytical technique to analyse their elemental contents based on a small amount of toe bone samples. This method is environment-friendly as, unlike traditional methods, it is not necessary to kill animals during sampling. Using this technique, we explored the effects of urbanization on the elemental contents of toe bones. Bufo bufo specimens were collected from an urban and two rural ponds. The ratios of Ca and P at the ponds were: 20.5% Ca and 14.6% P at the urban pond and 30.4% and 29.6% Ca, 22.4% and 21.7% P at the rural ponds, respectively. For the other elements, the following percentage ratios were found: 0.7% B, 0.3% Mg and 0.06% Zn at the urban pond and 1.1% and 0.4% B, 0.4% Mg and 0.05% Zn at the rural ponds, respectively. Canonical discriminant analysis indicated the separation of the urban and the rural ponds based on the elemental concentrations of toe bones. Significant differences were found between the concentrations of Ca, P, Mg, B and Zn at the urban and the rural ponds (p < 0.05). Anthropogenic activity was found to have effects on the elemental contents of toe bones in the urbanized area. Our study also demonstrated that the developed method was appropriate for the elemental analysis of small samples to assess the effects of urbanization.
Assuntos
Monitoramento Ambiental/métodos , Falanges dos Dedos do Pé/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Bufo bufo , UrbanizaçãoRESUMO
Trait-based ecology is gaining ground nowadays on species-based ecology: the number of research and publication focusing on the ecological role of taxa instead of the species themselves increased significantly in the last two decades. One great advantage of this approach is that communities with different species composition due to great geographical distances (e.g., different continents) or different environmental conditions (e.g., loess, sand, and alkaline grasslands) become comparable. Obtaining trait values is, however, labour and time consuming even in the case of so-called soft traits. It is therefore reasonable and desirable for scientists to share their data as widely as possible. Demand for such data induced the publication of data papers and the establishment of databases, which support both theoretical ecological research and practical restoration ecological projects. Although several international databases (e.g., TRY, LEDA, CLO-PLA, BiolFLOR) are available nowadays, Central and Eastern European species are either missing or underrepresented in them. Consequently, measurement and publication of the traits of species typical in the above region is necessary. This paper presents leaf trait (leaf fresh and dry weight, leaf area, specific leaf area and leaf dry matter content) data for more than 1100 species of the Central European flora.
RESUMO
BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.
Assuntos
Ecossistema , Solo , Biodiversidade , Microbiologia do Solo , BiotaRESUMO
We used the Air Pollution Tolerance Index (APTI), the amount of PM5 and PM10, and the elemental analysis of leaves to explore the sensitivity of tree species to air pollution. We assessed the tolerance of Robinia pseudoacacia, Acer saccharinum, Tilia × europaea, Acer platanoides, Fraxinus excelsior, Betula pendula, Celtis occidentalis, and Platanus × acerifolia to the amount of dust, APTI, and the elemental concentration of leaves. Leaves were collected in Debrecen (Hungary), which has a high intensity of vehicular traffic. The highest amount of PM (both PM10 and PM5) was found on the leaves of A. saccharinum and B. pendula. Our results demonstrated that A. saccharinum was moderately tolerant, while P. acerifolia was intermediate, based on the APTI value. There was a significant difference in the parameters of APTI and the elemental concentration of leaves among species. We found that tree leaves are reliable bioindicators of air pollution in urban areas. Based on the value of APTI, A. saccharinum and P. acerifolia, and based on PM, A. saccharinum and B. pendula are recommended as pollutant-accumulator species, while other studied species with lower APTI values are useful bioindicators of air pollution. The results support landscape engineers and urban developers in finding the best tree species that are tolerant to pollution and in using those as proxies of urban environmental health.
RESUMO
Fragmented natural habitats within human-transformed landscapes play a key role in preserving biodiversity. Ants as keystone species are essential elements of terrestrial ecosystems; thus, it is important to understand the factors influencing their presence. In a large-scale multi-site study, we surveyed ant assemblages using sweep netting and D-vac sampling on 158 ancient burial mounds preserving grassland habitats in agricultural landscapes in East-Hungary. We asked the following questions: (1) How do habitat factors and landscape composition affect species richness and functional diversity of ants? (2) Which ant traits are affected by habitat factors and landscape composition? Despite their small sizes, mounds as permanent and relatively undisturbed landscape elements could provide safe havens for diverse ant assemblages even in transformed agricultural landscapes. The complex habitat structure of wooded mounds supported high species and functional diversity of ant assemblages. Ant species on wooded mounds had small or medium-sized colonies, enabling the co-existence of more species. The effect of landscape composition on ant assemblages was mediated by habitat factors: steep slopes buffered the negative effect of the cropland matrix and enabled higher ant diversity.
Assuntos
Formigas/classificação , Formigas/crescimento & desenvolvimento , Animais , Biodiversidade , Cemitérios , Ecossistema , Hungria , FilogeniaRESUMO
Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.
Assuntos
Biodiversidade , Árvores , Europa (Continente)RESUMO
Atmospheric aerosol particles containing heavy metal contaminants deposit on the surface of plant leaves and the topsoil. Our aim was to reveal the pollution along an industrial-urban-rural gradient (IURG) in the central provinces of Thailand. Leaf samples from Ficus religiosa and Mimusops elengi were collected along with topsoil samples under the selected trees. Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn concentrations were determined by ICP-OES in soil and plant samples. Soils were not polluted according to the critical value; furthermore, the elemental composition did not differ among the sampling sites of the IURG. The rural site was also polluted due to heavy amounts of untreated wastewater of the adjacent Chao Phraya River. Bioaccumulation factors of Ba, Cu, and Mn was higher than 1, suggesting active accumulation of these elements in plant tissue. Our findings proved that the deposition of air pollutants and the resistance to air pollutants in the case of plant leaves were different and that humus materials of the soils had relevant role in bioaccumulation of Al, Ba, and Cu. At the same time, the geochemical background, the source of pollution, and the local plant species greatly influence the metal content of any given environmental compartment.
Assuntos
Poluição Ambiental , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Poluição Ambiental/análise , Metais Pesados/análise , Folhas de Planta/química , Solo , Poluentes do Solo/análise , Tailândia , ÁrvoresRESUMO
Monitoring air pollution and environmental health are crucial to ensure viable cities. We assessed the usefulness of the Air Pollution Tolerance Index (APTI) as a composite index of environmental health. Fine and coarse dust amount and elemental concentrations of Celtis occidentalis and Tilia × europaea leaves were measured in June and September at three sampling sites (urban, industrial, and rural) in Debrecen city (Hungary) to assess the usefulness of APTI. The correlation between APTI values and dust amount and elemental concentrations was also studied. Fine dust, total chlorophyll, and elemental concentrations were the most sensitive indicators of pollution. Based on the high chlorophyll and low elemental concentration of tree leaves, the rural site was the least disturbed by anthropogenic activities, as expected. We demonstrated that fine and coarse dust amount and elemental concentrations of urban tree leaves are especially useful for urban air quality monitoring. Correlations between APTI and other measured parameters were also found. Both C. occidentalis and T. europaea were sensitive to air pollution based on their APTI values. Thus, the APTI of tree leaves is an especially useful proxy measure of air pollution, as well as environmental health.
RESUMO
Woodlice are top consumers of a three-trophic system (soil, leaf litter, woodlice), and they are closely related to pollutant absorbing surfaces such as soil, leaf litter, and organic matter. We studied the effects of urbanization on trace element concentrations and fluctuating asymmetry of Armadillidium vulgare (Crustacea: Isopoda) individuals in and around Debrecen city, Hungary. Along an urbanization gradient (urban, suburban, and rural areas), trace element concentrations (Ba, Cu, Fe, Mn, Pb, and Zn) of woodlice and bioconcentration factor (BCF) were analyzed. Asymmetry was also measured in metric traits of woodlice: the length of three segments of antennae, the body length, and the width of the 3rd segment of pereon. We found significant differences in Ba and Cu concentration of A. vulgare individuals along the urbanization gradient. The highest Cu concentration was found in woodlice from the urban area and the highest Ba concentration was found in the individuals from the rural area. The Ba concentration was higher in females than in males. The BCF values of Cu indicated that A. vulgare accumulated this element from soil and leaf litter. There was no significant difference in symmetry of the bilateral traits of woodlice along the urbanization gradient based on FA levels. Our results showed that the urbanization had remarkable effect on the Ba and Cu concentration of woodlice which were originated from traffic pollution. At the same time, the anthropogenic activities did not affect the symmetry of the tested traits of A. vulgare individuals.
Assuntos
Isópodes/metabolismo , Oligoelementos/metabolismo , Animais , Metais Pesados/metabolismo , UrbanizaçãoRESUMO
Habitat loss and fragmentation causes a decline in insect populations. Odonata (both dragonflies and damselflies) are especially threatened by the destruction of both aquatic and terrestrial environment. Moreover, effects of large-scale habitat heterogeneity on Odonata assemblages are poorly studied. In a two years study along East-European lowland watercourses both aquatic and terrestrial environment were studied to reveal the importance of local (e.g. water depth, macrovegetation cover, etc.) and landscape-scale (e.g. farmland patch size, forest patch proportion, etc.) variables to Odonata (as well as to dragonflies and damselflies separately) through increasing spatial sampling scales. The specimens were sampled using 500 m long transects from May to September. Results, both on local and landscape scales emphasized the importance of terrestrial environment on Odonata. Local variables influence damselflies, while dragonflies are more sensitive to landscape variables. Damselfly's diversity decreased with increasing macrovegetation cover, while dragonfly's diversity decreased with the increasing degree of land use intensification, but increased with the length of watercourses. It is thus vital to stress the importance of partial watercourse clearing, and moderate maintenance of traditional farm management based on small parcel farming near watercourses to maintain diverse and healthy Odonata assemblages.
Assuntos
Odonatos/fisiologia , Agricultura/métodos , Animais , Biodiversidade , Ecossistema , ÁguaRESUMO
Survival of organisms in polluted habitats is a key factor regarding their long-term population persistence. To avoid harmful physiological effects of pollutants' accumulation in organisms, decontamination and excretion could be effective mechanisms. Among invertebrates, ground beetles are reliable indicators of environmental pollution. Published results, however, are inconsistent, as some studies showed effective decontamination and excretion of pollutants, while others demonstrated severe toxic symptoms due to extreme accumulation. Using ground beetles as model organisms, we tested our pollution intensity-dependent disposal hypothesis for five pollutants (Cd, Cu, Mn, Pb, and Zn) among four soil pollution intensity levels (low, moderate, high, and extreme) by categorical meta-analysis on published data. According to our hypothesis, decontamination and excretion of pollutants in ground beetles are effective in lowly or moderately polluted habitats, while disposal is ineffective in highly or extremely polluted ones, contributing to intense accumulation of pollutants in ground beetles. In accordance with the hypothesis, we found that in an extremely polluted habitat, accumulation of Cd and Pb in ground beetles was significantly higher than in lowly polluted ones. These findings may suggest the entomoremediation potential of ground beetles in an extremely polluted environment.
Assuntos
Besouros/fisiologia , Poluentes Ambientais/análise , Metais Pesados/análise , Poluentes do Solo/análise , Animais , Ecossistema , Invertebrados/química , Invertebrados/fisiologiaRESUMO
The maintenance of biodiversity is crucial for ecosystem processes such as plant biomass production, as higher species richness is associated with increased biomass production in plant communities. However, the effects of evenness and functional diversity on biomass production are understudied. We manipulated the composition of an experimental grassland by sowing various seed mixtures and examined the effects of diversity and evenness on biomass production after three years. We found that biomass production increased with greater species and functional richness but decreased with greater species and functional evenness. Standing biomass increased but species number and functional richness decreased with increasing proportion of perennial grasses. Our findings emphasise the importance of productive dominant species, as the proportion of perennial grasses had a positive effect on standing biomass, while species and functional evenness had a negative effect on it. Thus, our findings support the theory that, besides diversity, dominance effects and the so-called mass ratio hypothesis may also play a key role in explaining primary biomass production.
Assuntos
Biodiversidade , Biomassa , Pradaria , Sementes/fisiologia , Agricultura/métodos , Algoritmos , Clima , Herbivoria , Hungria , Modelos Lineares , Poaceae/fisiologia , Especificidade da EspécieRESUMO
Plant species performance in rangelands highly depends on the effect of grazing and also on the occurrence of unpalatable benefactor species that can act as biotic refuges protecting neighboring plants from herbivores. The balance between facilitation and competition may changes with the benefactor density. Despite the high number of studies on the role of biotic refuges, the density dependent effects of unpalatable herbaceous plants on the performance of other species, and on the habitat heterogeneity of rangelands are still unclear. Therefore, we performed a study to test the following hypotheses: (i) Performances of understory species follow a humped-back relationship along the density gradient of the unpalatable benefactor species. (ii) Small-scale heterogeneity of the vegetation decreases with increasing benefactor density. We studied meadow steppes with medium intensity cattle grazing in Hungary. We surveyed understory species' performance (number of flowering shoots and cover scores) along the density gradient of a common, native unpalatable species (Althaea officinalis). Our findings supported both hypotheses. We found unimodal relationship between the benefactor cover and both the flowering success and richness of understory species. Moreover, small-scale heterogeneity declined with increasing benefactor cover. In this study we detected a humped-back pattern of facilitation along the density gradient of an herbaceous benefactor in pastures. Indeed, this pattern was predictable based on such conceptual models like "consumer pressure-abiotic stress model," "humped-back model," "intermediate disturbance hypothesis," and "disturbance heterogeneity model"; but until now the validity of these relationships has not been demonstrated for herbaceous species. By the demonstration of this effect between herbaceous species we can better forecast the responses of grasslands to changes in management.
RESUMO
Urbanization fragments, isolates or eliminates natural habitats, and changes the structure and composition of assemblages living in the remaining natural fragments. Knowing assembly rules is necessary to support and/or maintain biodiversity in urban habitats. We hypothesized that forest communities in rural sites are organized by environmental filtering, but this may be changed by urbanization, and in the suburban and urban forest fragments replaced by randomly organized assemblages, influenced by the colonization of species from the surrounding matrix. Evaluating simultaneously the functional and phylogenetic relationships of co-existing species, we showed that at the rural sites, co-existing ground beetle species were functionally and phylogenetically more similar than expected by chance, indicating that environmental filtering was the likely process structuring these communities. Contrary to this, in urban and suburban sites, the co-occurring species were functionally and phylogenetically not different from the null model, indicating randomly structured assemblages. According to our findings, changes in environmental and habitat characteristics accompanied by urbanization lead to assemblages of randomly colonized species from the surrounding matrix, threatening proper ecosystem functioning. To reassemble stochastically assembled species of urban and suburban fragments to structured, properly functioning communities, appropriate management strategies are needed which simultaneously consider recreational, economic and conservation criteria.