Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 17(9): 1284-1292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436772

RESUMO

High-throughput sequencing has emerged as the favoured method to study microRNA (miRNA) expression, but biases introduced during library preparation have been reported. We recently compared the performance (sensitivity, reliability, titration response and differential expression) of six commercially-available kits on synthetic miRNAs and human RNA, where library preparation was performed by the vendors. We hereby supplement this study with data from two further commonly used kits (NEBNext, NEXTflex) whose manufacturers initially declined to participate. NEXTflex demonstrated the highest sensitivity, which may reflect its use of partially-randomized adapter sequences, but overall performance was lower than the QIAseq and TailorMix kits. NEBNext showed intermediate performance. We reaffirm that biases are kit specific, complicating the comparison of miRNA datasets generated using different kits.


Assuntos
Biblioteca Gênica , Engenharia Genética , MicroRNAs/genética , Engenharia Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reagentes de Laboratório/normas , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
2.
RNA Biol ; 17(1): 75-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559901

RESUMO

High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.


Assuntos
Biblioteca Gênica , Engenharia Genética/métodos , MicroRNAs/genética , Engenharia Genética/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , MicroRNAs/síntese química , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA