Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 171(5): 1138-1150.e15, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056342

RESUMO

Despite its success in several clinical trials, cancer immunotherapy remains limited by the rarity of targetable tumor-specific antigens, tumor-mediated immune suppression, and toxicity triggered by systemic delivery of potent immunomodulators. Here, we present a proof-of-concept immunomodulatory gene circuit platform that enables tumor-specific expression of immunostimulators, which could potentially overcome these limitations. Our design comprised de novo synthetic cancer-specific promoters and, to enhance specificity, an RNA-based AND gate that generates combinatorial immunomodulatory outputs only when both promoters are mutually active. These outputs included an immunogenic cell-surface protein, a cytokine, a chemokine, and a checkpoint inhibitor antibody. The circuits triggered selective T cell-mediated killing of cancer cells, but not of normal cells, in vitro. In in vivo efficacy assays, lentiviral circuit delivery mediated significant tumor reduction and prolonged mouse survival. Our design could be adapted to drive additional immunomodulators, sense other cancers, and potentially treat other diseases that require precise immunological programming.


Assuntos
Redes Reguladoras de Genes , Imunoterapia/métodos , Neoplasias Ovarianas/terapia , Animais , Feminino , Humanos , Imunomodulação , Camundongos , Neoplasias Ovarianas/imunologia , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia
2.
Cell ; 155(6): 1409-21, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24269006

RESUMO

N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.


Assuntos
Meiose , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces/citologia , Saccharomyces/metabolismo , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/metabolismo , Nucléolo Celular/metabolismo , Genoma Fúngico , Metilação , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , tRNA Metiltransferases/metabolismo
3.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401431

RESUMO

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Animais , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Fator de Transcrição Associado à Microftalmia/efeitos da radiação , Cultura Primária de Células , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
4.
PLoS Genet ; 18(11): e1010495, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374936

RESUMO

Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.


Assuntos
Instabilidade Genômica , Rad51 Recombinase , Animais , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Quebras de DNA de Cadeia Dupla , RNA , Reparo do DNA/genética , Mamíferos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Nucleic Acids Res ; 50(W1): W246-W253, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536332

RESUMO

Proteins with similar phylogenetic patterns of conservation or loss across evolutionary taxa are strong candidates to work in the same cellular pathways or engage in physical or functional interactions. Our previously published tools implemented our method of normalized phylogenetic sequence profiling to detect functional associations between non-homologous proteins. However, many proteins consist of multiple protein domains subjected to different selective pressures, so using protein domain as the unit of analysis improves the detection of similar phylogenetic patterns. Here we analyze sequence conservation patterns across the whole tree of life for every protein domain from a set of widely studied organisms. The resulting new interactive webserver, DEPCOD (DEtection of Phylogenetically COrrelated Domains), performs searches with either a selected pre-defined protein domain or a user-supplied sequence as a query to detect other domains from the same organism that have similar conservation patterns. Top similarities on two evolutionary scales (the whole tree of life or eukaryotic genomes) are displayed along with known protein interactions and shared complexes, pathway enrichment among the hits, and detailed visualization of sources of detected similarities. DEPCOD reveals functional relationships between often non-homologous domains that could not be detected using whole-protein sequences. The web server is accessible at http://genetics.mgh.harvard.edu/DEPCOD.


Assuntos
Domínios Proteicos , Proteínas , Software , Sequência de Aminoácidos , Filogenia , Proteínas/genética , Evolução Molecular
6.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338765

RESUMO

Patients with active ulcerative colitis (UC) display a misalignment of the circadian clock, which plays a vital role in various immune functions. Our aim was to characterize the expression of clock and inflammation genes, and their mutual regulatory genes in treatment-naïve pediatric patients with UC. Using the Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform and R algorithms, we analyzed rectal biopsy transcriptomic data from two cohorts (206 patients with UC vs. 20 healthy controls from the GSE-109142 study, and 43 patients with UC vs. 55 healthy controls from the GSE-117993 study). We compared gene expression levels and correlation of clock genes (BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), inflammatory genes (IκB, IL10, NFκB1, NFκB2, IL6, TNFα) and their mutual regulatory genes (RORα, RORγ, REV-ERBα, PGC1α, PPARα, PPARγ, AMPK, SIRT1) in patients with active UC and healthy controls. The clock genes BMAL1, CLOCK, PER1 and CRY1 and the inflammatory genes IκB, IL10, NFκB1, NFκB2, IL6 and TNFα were significantly upregulated in patients with active UC. The genes encoding the mutual regulators RORα, RORγ, PGC1α, PPARα and PPARγ were significantly downregulated in patients with UC. A uniform pattern of gene expression was found in healthy controls compared to the highly variable expression pattern in patients with UC. Among the healthy controls, inflammatory genes were positively correlated with clock genes and they all showed reduced expression. The difference in gene expression levels was associated with disease severity and endoscopic score but not with histological score. In patients with active UC, clock gene disruption is associated with abnormal mucosal immune response. Disrupted expression of genes encoding clock, inflammation and their mutual regulators together may play a role in active UC.


Assuntos
Proteínas CLOCK , Colite Ulcerativa , Criança , Humanos , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/fisiologia , Colite Ulcerativa/genética , Inflamação/genética , Interleucina-10 , Interleucina-6 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , PPAR alfa , PPAR gama , Fator de Necrose Tumoral alfa , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Criptocromos/genética , Criptocromos/metabolismo
7.
Mol Cell ; 59(4): 664-76, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26236014

RESUMO

The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We suggest that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct melanoma prevention opportunities via targeting specific microenvironments.


Assuntos
Queratinócitos/fisiologia , Melanoma Experimental/secundário , Fator de Transcrição Associado à Microftalmia/metabolismo , Neoplasias Cutâneas/patologia , Animais , Sequência de Bases , Sítios de Ligação , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Regiões Promotoras Genéticas , Interferência de RNA , Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo
8.
Plant J ; 106(6): 1746-1758, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33837586

RESUMO

Floral guides are patterned cues that direct the pollinator to the plant reproductive organs. The spatial distribution of showy visual and olfactory traits allows efficient plant-pollinator interactions. Data on the mechanisms underlying floral volatile patterns or their interactions with pollinators are lacking. Here we characterize the spatial emission patterns of volatiles from the corolla of the model plant Petunia × hybrida and reveal the ability of honeybees to distinguish these patterns. Along the adaxial epidermis, in correlation with cell density, the petal base adjacent to reproductive organs emitted significantly higher levels of volatiles than the distal petal rim. Volatile emission could also be differentiated between the two epidermal surfaces: emission from the adaxial side was significantly higher than that from the abaxial side. Similar emission patterns were also observed in other petunias, Dianthus caryophyllus (carnation) and Argyranthemum frutescens (Marguerite daisy). Analyses of transcripts involved in volatile production/emission revealed lower levels of the plasma-membrane transporter ABCG1 in the abaxial versus adaxial epidermis. Transient overexpression of ABCG1 enhanced emission from the abaxial epidermis to the level of the adaxial epidermis, suggesting its involvement in spatial emission patterns in the epidermal layers. Proboscis extension response experiments showed that differences in emission levels along the adaxial epidermis, that is, petal base versus rim, detected by GC-MS are also discernible by honeybees.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Abelhas/fisiologia , Flores/química , Odorantes/análise , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Flores/metabolismo , Proteínas de Plantas/genética , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
9.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154076

RESUMO

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fase G2/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Fase S/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Genome Res ; 29(3): 439-448, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718334

RESUMO

The homologous recombination repair (HRR) pathway repairs DNA double-strand breaks in an error-free manner. Mutations in HRR genes can result in increased mutation rate and genomic rearrangements, and are associated with numerous genetic disorders and cancer. Despite intensive research, the HRR pathway is not yet fully mapped. Phylogenetic profiling analysis, which detects functional linkage between genes using coevolution, is a powerful approach to identify factors in many pathways. Nevertheless, phylogenetic profiling has limited predictive power when analyzing pathways with complex evolutionary dynamics such as the HRR. To map novel HRR genes systematically, we developed clade phylogenetic profiling (CladePP). CladePP detects local coevolution across hundreds of genomes and points to the evolutionary scale (e.g., mammals, vertebrates, animals, plants) at which coevolution occurred. We found that multiscale coevolution analysis is significantly more biologically relevant and sensitive to detect gene function. By using CladePP, we identified dozens of unrecognized genes that coevolved with the HRR pathway, either globally across all eukaryotes or locally in different clades. We validated eight genes in functional biological assays to have a role in DNA repair at both the cellular and organismal levels. These genes are expected to play a role in the HRR pathway and might lead to a better understanding of missing heredity in HRR-associated cancers (e.g., heredity breast and ovarian cancer). Our platform presents an innovative approach to predict gene function, identify novel factors related to different diseases and pathways, and characterize gene evolution.


Assuntos
Evolução Molecular , Reparo de DNA por Recombinação , Software , Animais , Enzimas Reparadoras do DNA/genética , Loci Gênicos , Filogenia , Plantas/genética
11.
Bioinformatics ; 36(14): 4116-4125, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353123

RESUMO

SUMMARY: The exponential growth in available genomic data is expected to reach full sequencing of a million genomes in the coming decade. Improving and developing methods to analyze these genomes and to reveal their utility is of major interest in a wide variety of fields, such as comparative and functional genomics, evolution and bioinformatics. Phylogenetic profiling is an established method for predicting functional interactions between proteins based on similarities in their evolutionary patterns across species. Proteins that function together (i.e. generate complexes, interact in the same pathways or improve adaptation to environmental niches) tend to show coordinated evolution across the tree of life. The normalized phylogenetic profiling (NPP) method takes into account minute changes in proteins across species to identify protein co-evolution. Despite the success of this method, it is still not clear what set of parameters is required for optimal use of co-evolution in predicting functional interactions. Moreover, it is not clear if pathway evolution or function should direct parameter choice. Here, we create a reliable and usable NPP construction pipeline. We explore the effect of parameter selection on functional interaction prediction using NPP from 1028 genomes, both separately and in various value combinations. We identify several parameter sets that optimize performance for pathways with certain biological annotation. This work reveals the importance of choosing the right parameters for optimized function prediction based on a biological context. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are available on GitHub: https://github.com/iditam/CompareNPPs. CONTACT: yuvaltab@ekmd.huji.ac.il. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Genoma , Filogenia , Proteínas
13.
Curr Neurol Neurosci Rep ; 19(10): 70, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31440850

RESUMO

PURPOSE OF REVIEW: Until recently, the gene associated with the recessive form of familial brain calcification (PFBC, Fahr disease) was unknown. MYORG, a gene that causes recessive PFBC was only recently discovered and is currently the only gene associated with a recessive form of this disease. Here, we review the radiological and clinical findings in adult MYORG mutation homozygous and heterozygous individuals. RECENT FINDINGS: MYORG was shown to be the cause of a large fraction of recessive cases of PFBC in patients of different ethnic populations. Pathogenic mutations include inframe insertions and deletions in addition to nonsense and missense mutations that are distributed throughout the entire MYORG coding region. Homozygotes have extensive brain calcification in all known cases, whereas in some carriers of heterozygous mutation, punctuated calcification of the globus pallidus is demonstrated. The clinical spectrum in homozygotes ranges from the lack of neurological symptoms to severe progressive neurological syndrome with bulbar and cerebellar signs, parkinsonism and other movement disorders, and cognitive impairments. Heterozygotes are clinically asymptomatic. MYORG is a transmembrane protein localized to the endoplasmic reticulum and is mainly expressed in astrocytes. While the biochemical pathways of the protein are still unknown, information from its evolution profile across hundreds of species (phylogenetic profiling) suggests a role for MYORG in regulating ion homeostasis via its glycosidase domain. MYORG mutations are a major cause for recessive PFBC in different world populations. Future studies are required in order to reveal the cellular role of the MYORG protein.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Adulto , Doenças dos Gânglios da Base , Calcinose , Glicosídeo Hidrolases , Heterozigoto , Humanos , Masculino , Mutação , Doenças Neurodegenerativas , Linhagem , Filogenia
14.
Nature ; 493(7434): 694-8, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364702

RESUMO

Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute and Dicer as essential cofactors that process and present small RNAs to their targets. Well-validated small RNA pathway cofactors such as these show distinctive patterns of conservation or divergence in particular animal, plant, fungal and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or short interfering RNA (siRNA)-mediated repression in Caenorhabditis elegans and Drosophila melanogaster, and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction data sets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about one-half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small-RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in those species.


Assuntos
Caenorhabditis elegans/genética , Variação Genética , Filogenia , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Eucariotos/classificação , Eucariotos/genética , Genoma/genética , MicroRNAs/genética , Proteoma , Splicing de RNA
15.
Nucleic Acids Res ; 45(4): 2081-2098, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28204614

RESUMO

MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4­NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4­NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Interferência de RNA , Ribonucleoproteínas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Grânulos Citoplasmáticos/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ribonucleases/metabolismo
16.
Nucleic Acids Res ; 43(W1): W154-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25958392

RESUMO

Proteins that function in the same pathways, protein complexes or the same environmental conditions can show similar patterns of sequence conservation across phylogenetic clades. In species that no longer require a specific protein complex or pathway, these proteins, as a group, tend to be lost or diverge. Analysis of the similarity in patterns of sequence conservation across a large set of eukaryotes can predict functional associations between different proteins, identify new pathway members and reveal the function of previously uncharacterized proteins. We used normalized phylogenetic profiling to predict protein function and identify new pathway members and disease genes. The phylogenetic profiles of tens of thousands conserved proteins in the human, mouse, Caenorhabditis elegans and Drosophila genomes can be queried on our new web server, PhyloGene. PhyloGene provides intuitive and user-friendly platform to query the patterns of conservation across 86 animal, fungal, plant and protist genomes. A protein query can be submitted either by selecting the name from whole-genome protein sets of the intensively studied species or by entering a protein sequence. The graphic output shows the profile of sequence conservation for the query and the most similar phylogenetic profiles for the proteins in the genome of choice. The user can also download this output in numerical form.


Assuntos
Filogenia , Proteínas/classificação , Homologia de Sequência de Aminoácidos , Software , Algoritmos , Animais , Gráficos por Computador , Genômica , Humanos , Internet , Camundongos , Proteínas/química , Proteínas/genética
17.
Mol Syst Biol ; 9: 692, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084807

RESUMO

Genes with common profiles of the presence and absence in disparate genomes tend to function in the same pathway. By mapping all human genes into about 1000 clusters of genes with similar patterns of conservation across eukaryotic phylogeny, we determined that sets of genes associated with particular diseases have similar phylogenetic profiles. By focusing on those human phylogenetic gene clusters that significantly overlap some of the thousands of human gene sets defined by their coexpression or annotation to pathways or other molecular attributes, we reveal the evolutionary map that connects molecular pathways and human diseases. The other genes in the phylogenetic clusters enriched for particular known disease genes or molecular pathways identify candidate genes for roles in those same disorders and pathways. Focusing on proteins coevolved with the microphthalmia-associated transcription factor (MITF), we identified the Notch pathway suppressor of hairless (RBP-Jk/SuH) transcription factor, and showed that RBP-Jk functions as an MITF cofactor.


Assuntos
Evolução Molecular , Genoma , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Fator de Transcrição Associado à Microftalmia/genética , Microftalmia/genética , Filogenia , Algoritmos , Sequência de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Linhagem Celular Tumoral , Mapeamento Cromossômico , Bases de Dados Genéticas , Fungos/genética , Fungos/metabolismo , Redes Reguladoras de Genes , Loci Gênicos , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/classificação , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Redes e Vias Metabólicas , Fator de Transcrição Associado à Microftalmia/classificação , Fator de Transcrição Associado à Microftalmia/metabolismo , Microftalmia/metabolismo , Microftalmia/patologia , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Genome Med ; 16(1): 4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178268

RESUMO

BACKGROUND: Next-generation sequencing (NGS) has significantly transformed the landscape of identifying disease-causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undiagnosed. This may be attributed not only to the challenges posed by harder-to-detect variants, such as non-coding and structural variations but also to the existence of variants in genes not previously associated with the patient's clinical phenotype. This study introduces EvORanker, an algorithm that integrates unbiased data from 1,028 eukaryotic genomes to link mutated genes to clinical phenotypes. METHODS: EvORanker utilizes clinical data, multi-scale phylogenetic profiling, and other omics data to prioritize disease-associated genes. It was evaluated on solved exomes and simulated genomes, compared with existing methods, and applied to 6260 knockout genes with mouse phenotypes lacking human associations. Additionally, EvORanker was made accessible as a user-friendly web tool. RESULTS: In the analyzed exomic cohort, EvORanker accurately identified the "true" disease gene as the top candidate in 69% of cases and within the top 5 candidates in 95% of cases, consistent with results from the simulated dataset. Notably, EvORanker outperformed existing methods, particularly for poorly annotated genes. In the case of the 6260 knockout genes with mouse phenotypes, EvORanker linked 41% of these genes to observed human disease phenotypes. Furthermore, in two unsolved cases, EvORanker successfully identified DLGAP2 and LPCAT3 as disease candidates for previously uncharacterized genetic syndromes. CONCLUSIONS: We highlight clade-based phylogenetic profiling as a powerful systematic approach for prioritizing potential disease genes. Our study showcases the efficacy of EvORanker in associating poorly annotated genes to disease phenotypes observed in patients. The EvORanker server is freely available at https://ccanavati.shinyapps.io/EvORanker/ .


Assuntos
Genômica , Doenças Raras , Humanos , Animais , Camundongos , Doenças Raras/genética , Filogenia , Genômica/métodos , Fenótipo , Exoma , 1-Acilglicerofosfocolina O-Aciltransferase/genética
19.
Front Plant Sci ; 14: 1180899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360732

RESUMO

In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of PhWD2 (termed UPPER - Unique Plant PhEnylpropanoid Regulator) resulted in a significant increase in the levels of volatiles emitted from and accumulated in internal pools, suggesting that it is a negative regulator of petunia floral scent production.

20.
Front Mol Biosci ; 9: 955753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060259

RESUMO

Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by pathogenic expansions of CTG repeats. The expanded repeats are transcribed to long RNA and induce cellular toxicity. Recent studies suggest that the CUG repeats are processed by the RNA interference (RNAi) pathway to generate small interfering repeated RNA (siRNA). However, the effects of the CTG repeat-derived siRNAs remain unclear. We hypothesize that the RNAi machinery in DM1 patients generates distinct gene expression patterns that determine the disease phenotype in the individual patient. The abundance of genes with complementary repeats that are targeted by siRNAs in each tissue determines the way that the tissue is affected in DM1. We integrated and analyzed published transcriptome data from muscle, heart, and brain biopsies of DM1 patients, and revealed shared, characteristic changes that correlated with disease phenotype. These signatures are overrepresented by genes and transcription factors bearing endogenous CTG/CAG repeats and are governed by aberrant activity of the RNAi machinery, miRNAs, and a specific gain-of-function of the CTG repeats. Computational analysis of the DM1 transcriptome enhances our understanding of the complex pathophysiology of the disease and may reveal a path for cure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA