RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.
Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.
Assuntos
Astrócitos , Córtex Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Astrócitos/enzimologia , Astrócitos/virologia , Córtex Cerebral/virologia , Humanos , Organoides/virologia , Cultura Primária de Células , SARS-CoV-2/fisiologiaRESUMO
BACKGROUND: During pregnancy, the Zika flavivirus (ZIKV) infects human placentas, inducing defects in the developing fetus. The flavivirus nonstructural protein 1 (NS1) alters glycosaminoglycans on the endothelium, causing hyperpermeability in vitro and vascular leakage in vivo in a tissue-dependent manner. The contribution of ZIKV NS1 to placental dysfunction during ZIKV infection remains unknown. METHODS: We examined the effect of ZIKV NS1 on expression and release of heparan sulfate (HS), hyaluronic acid (HA), and sialic acid on human trophoblast cell lines and anchoring villous explants from first-trimester placentas infected with ZIKV ex vivo. We measured changes in permeability in trophoblasts and stromal cores using a dextran-based fluorescence assay and changes in HA receptor expression using immunofluorescent microscopy. RESULTS: ZIKV NS1 in the presence and absence of ZIKV increased the permeability of anchoring villous explants. ZIKV NS1 induced shedding of HA and HS and altered expression of CD44 and lymphatic endothelial cell HA receptor-1, HA receptors on stromal fibroblasts and Hofbauer macrophages in villous cores. Hyaluronidase was also stimulated in NS1-treated trophoblasts. CONCLUSIONS: These findings suggest that ZIKV NS1 contributes to placental dysfunction via modulation of glycosaminoglycans on trophoblasts and chorionic villi, resulting in increased permeability of human placentas.
Assuntos
Placenta/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/transmissão , Zika virus/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Transmissão Vertical de Doenças Infecciosas , Permeabilidade , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/virologiaRESUMO
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, yet there are no established treatments for preventing maternal-fetal transmission. During first trimester, HCMV replicates in basal decidua that functions as a reservoir for virus and source of transmission to the attached placenta and fetal hemiallograft but also contains immune cells, including natural killer cells, macrophages, and T cell subsets, that respond to pathogens, protecting the placenta and fetus. However, the specific cellular and cytokine responses to infection are unknown, nor are the immune correlates of protection that guide development of therapeutic strategies. Here we survey immune cell phenotypes in intact explants of basal decidua infected with a clinical pathogenic HCMV strain ex vivo and identify specific changes occurring in response to infection in the tissue environment. Using 4-color immunofluorescence microscopy, we found that at 3 days postinfection, virus replicates in decidual stromal cells and epithelial cells of endometrial glands. Infected cells and effector memory CD8+ T cells (TEM) in contact with them make IFN-γ. CD8+ TEM cells produce granulysin and cluster at sites of infection in decidua and the epithelium of endometrial glands. Quantification indicated expansion of two immune cell subtypes-CD8+ TEM cells and, to a lesser extent, iNKT cells. Approximately 20% of immune cells were found in pairs in both control and infected decidua, suggesting frequent cross-talk in the microenvironment of decidua. Our findings indicate a complex immune microenvironment in basal decidua and suggest CD8+ TEM cells play a role in early responses to decidual infection in seropositive women.
Assuntos
Infecções por Citomegalovirus/patologia , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/imunologia , Decídua/patologia , Imunidade Celular , Placenta/patologia , Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Células T Matadoras Naturais/imunologia , Técnicas de Cultura de Órgãos , Gravidez , Células Estromais/patologia , Células Estromais/virologiaRESUMO
Background: Maternal Zika virus (ZIKV) infection with prolonged viremia leads to fetal infection and congenital Zika syndrome. Previously, we reported that ZIKV infects primary cells from human placentas and fetal membranes. Here, we studied viral replication in numerous explants of anchoring villi and basal decidua from first-trimester human placentas and midgestation amniotic epithelial cells (AmEpCs). Methods: Explants and AmEpCs were infected with American and African ZIKV strains at low multiplicities, and ZIKV proteins were visualized by immunofluorescence. Titers of infectious progeny, cell proliferation, and invasiveness were quantified. Results: In anchoring villus, ZIKV replicated reproducibly in proliferating cytotrophoblasts in proximal cell columns, dividing Hofbauer cells in villus cores, and invasive cytotrophoblasts, but frequencies differed. Cytotrophoblasts in explants infected by Nicaraguan strains were invasive, whereas those infected by prototype MR766 largely remained in cell columns, and titers varied by donor and strain. In basal decidua, ZIKV replicated in glandular epithelium, decidual cells, and immune cells. ZIKV-infected AmEpCs frequently occurred in pairs and expressed Ki67 and phosphohistone H3, indicating replication in dividing cells. Conclusions: ZIKV infection in early pregnancy could target proliferating cell column cytotrophoblasts and Hofbauer cells, amplifying infection in basal decidua and chorionic villi and enabling transplacental transmission.
Assuntos
Complicações Infecciosas na Gravidez/virologia , Replicação Viral/fisiologia , Infecção por Zika virus/virologia , Zika virus/química , Âmnio/citologia , Células Epiteliais/virologia , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Placenta/virologia , Gravidez , Primeiro Trimestre da Gravidez , Zika virus/genéticaRESUMO
Human cytomegalovirus (HCMV) is the leading viral cause of birth defects, including microcephaly, neurological deficits, hearing impairment, and vision loss. We previously reported that epithelial cells in amniotic membranes of placentas from newborns with intrauterine growth restriction and underlying congenital HCMV infection contain viral proteins in cytoplasmic vesicles. Herein, we immunostained amniotic membranes from 51 placentas from symptomatic and asymptomatic congenital infection with HCMV DNA in amniotic fluid and/or newborn saliva, intrauterine growth restriction, preterm deliveries, and controls. We consistently observed HCMV proteins in amniotic epithelial cells (AmEpCs) from infected placentas, sometimes with aberrant morphology. Primary AmEpCs isolated from mid-gestation placentas infected with pathogenic VR1814 proliferated and released infectious progeny for weeks, producing higher virus titers than late-gestation cells that varied by donor. In contrast to intact virion assembly compartments in differentiated retinal pigment epithelial cells, infected AmEpCs made dispersed multivesicular bodies. Primary AmEpCs and explants of amniochorionic membranes from mid-gestation placentas formed foci of infection, and interferon-ß production was prolonged. Infected AmEpCs up-regulated anti-apoptotic proteins survivin and Bcl-xL by mechanisms dependent and independent of the activated STAT3. Amniotic membranes naturally expressed both survivin and Bcl-xL, indicating that fetal membranes could foster persistent viral infection. Our results suggest strengthening innate immune responses and reducing viral functions could suppress HCMV infection in the fetal compartment.
Assuntos
Infecções por Citomegalovirus/congênito , Citomegalovirus/imunologia , Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , Âmnio/patologia , Âmnio/virologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Feminino , Retardo do Crescimento Fetal/virologia , Feto/metabolismo , Idade Gestacional , Humanos , Recém-Nascido , Interferon beta/metabolismo , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/patologia , Carga Viral , Replicação ViralRESUMO
UNLABELLED: Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi-syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. IMPORTANCE: Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation, hearing loss, visual impairment, and pregnancy complications, including intrauterine growth restriction, preterm delivery, and stillbirth. Currently, there is neither a vaccine nor any approved treatment for congenital HCMV infection during gestation. The molecular mechanisms underlying structural deficiencies in the placenta that undermine fetal development are poorly understood. Here we report that HCMV replicates in trophoblast progenitor cells (TBPCs)-precursors of the mature placental cells, syncytiotrophoblasts and cytotrophoblasts, in chorionic villi-in clinical cases of congenital infection. Virus replication in TBPCs in vitro dysregulates key proteins required for self-renewal and differentiation and inhibits normal division and development into mature placental cells. Our findings provide insights into the underlying molecular mechanisms by which HCMV replication interferes with placental maturation and transport functions.
Assuntos
Diferenciação Celular , Infecções por Citomegalovirus/patologia , Citomegalovirus/fisiologia , Placenta/virologia , Células-Tronco/virologia , Trofoblastos/virologia , Replicação Viral , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/virologia , Células-Tronco/fisiologia , Trofoblastos/fisiologiaRESUMO
Human cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications. Antibodies targeting the viral glycoprotein B (gB) surface protein are known to neutralize HCMV infectivity, with high-affinity binding being a desirable trait, both to compete with low-affinity antibodies that promote the transmission of virus across the placenta and to displace nonneutralizing antibodies binding nearby epitopes. Using a miniaturized screening technology to characterize secreted IgG from single human B lymphocytes, 30 antibodies directed against gB were previously cloned. The most potent clone, TRL345, is described here. Its measured affinity was 1 pM for the highly conserved site I of the AD-2 epitope of gB. Strain-independent neutralization was confirmed for 15 primary HCMV clinical isolates. TRL345 prevented HCMV infection of placental fibroblasts, smooth muscle cells, endothelial cells, and epithelial cells, and it inhibited postinfection HCMV spread in epithelial cells. The potential utility for preventing congenital transmission is supported by the blockage of HCMV infection of placental cell types central to virus transmission to the fetus, including differentiating cytotrophoblasts, trophoblast progenitor cells, and placental fibroblasts. Further, TRL345 was effective at controlling an ex vivo infection of human placental anchoring villi. TRL345 has been utilized on a commercial scale and is a candidate for clinical evaluation.
Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Infecções por Citomegalovirus/virologia , Células Endoteliais/imunologia , Células Endoteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Epitopos/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Imunoglobulina G/imunologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/virologia , Placenta/imunologia , Placenta/virologia , Gravidez , Proteínas do Envelope Viral/imunologiaRESUMO
BACKGROUND: Human cytomegalovirus (HCMV) is the major viral etiology of congenital infection and birth defects. Fetal transmission is high (30%-40%) in primary maternal infection, and symptomatic babies have permanent neurological, hearing, and vision defects. Recurrent infection is infrequently transmitted (2%) and largely asymptomatic. Congenital infection is also associated with intrauterine growth restriction (IUGR). METHODS: To investigate possible underlying HCMV infection in cases of idiopathic IUGR, we studied maternal and cord sera and placentas from 19 pregnancies. Anti-HCMV antibodies, hypoxia-related factors, and cmvIL-10 were measured in sera. Placental biopsy specimens were examined for viral DNA, expression of infected cell proteins, and pathology. RESULTS: Among 7 IUGR cases, we identified 2 primary and 3 recurrent HCMV infections. Virus replicated in glandular epithelium and lymphatic endothelium in the decidua, cytotrophoblasts, and smooth muscle cells in blood vessels of floating villi and the chorion. Large fibrinoids with avascular villi, edema, and inflammation were significantly increased. Detection of viral proteins in the amniotic epithelium indicated transmission in 2 cases of IUGR with primary infection and 3 asymptomatic recurrent infections. CONCLUSIONS: Congenital HCMV infection impairs placental development and functions and should be considered as an underlying cause of IUGR, regardless of virus transmission to the fetus.
Assuntos
Infecções por Citomegalovirus/complicações , Retardo do Crescimento Fetal/virologia , Complicações Infecciosas na Gravidez/patologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , DNA Viral , Feminino , Humanos , Imunoglobulina G/sangue , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Projetos Piloto , Gravidez , Testes SorológicosRESUMO
Human cytomegalovirus (HCMV) infection is transmitted from the infected mother to the placenta and fetus. Virus replicates in the decidua, invasive cytotrophoblasts that breach the uterine vasculature and villous cytotrophoblasts underlying syncytiotrophoblasts, then reaches blood vessels in the villus core. Virus replication, fibrosis, and edema result in a hypoxic intrauterine environment and release of cytokines that stimulates compensatory development of the placenta. We employed villous explant cultures to study viral effects on differentiation and test novel approaches to rescue the placenta from infection.
Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Citomegalovirus/imunologia , Feminino , Humanos , Imunoglobulinas/imunologia , Modelos Biológicos , Placenta/imunologia , Placenta/virologia , Gravidez , Útero/imunologia , Útero/virologia , Replicação ViralRESUMO
We investigated human cytomegalovirus pathogenesis by comparing infection with the low-passage, endotheliotropic strain VR1814 and the attenuated laboratory strain AD169 in human placental villi as explants in vitro and xenografts transplanted into kidney capsules of SCID mice (ie, mice with severe combined immunodeficiency). In this in vivo human placentation model, human cytotrophoblasts invade the renal parenchyma, remodel resident arteries, and induce a robust lymphangiogenic response. VR1814 replicated in villous and cell column cytotrophoblasts and reduced formation of anchoring villi in vitro. In xenografts, infected cytotrophoblasts had a severely diminished capacity to invade and remodel resident arteries. Infiltrating lymphatic endothelial cells proliferated, aggregated, and failed to form lymphatic vessels. In contrast, AD169 grew poorly in cytotrophoblasts in explants, and anchoring villi formed normally in vitro. Likewise, viral replication was impaired in xenografts, and cytotrophoblasts retained invasive capacity, but some partially remodeled blood vessels incorporated lymphatic endothelial cells and were permeable to blood. The expression of both vascular endothelial growth factor (VEGF)-C and basic fibroblast growth factor increased in VR1814-infected explants, whereas VEGF-A and soluble VEGF receptor-3 increased in those infected with AD169. Our results suggest that viral replication and paracrine factors could undermine vascular remodeling and cytotrophoblast-induced lymphangiogenesis, contributing to bleeding, hypoxia, and edema in pregnancies complicated by congenital human cytomegalovirus infection.
Assuntos
Vasos Sanguíneos/fisiopatologia , Infecções por Citomegalovirus/patologia , Citomegalovirus/fisiologia , Linfangiogênese , Placentação , Trofoblastos/patologia , Trofoblastos/virologia , Animais , Artérias/patologia , Vasos Sanguíneos/patologia , Movimento Celular , Proliferação de Células , Vilosidades Coriônicas/crescimento & desenvolvimento , Vilosidades Coriônicas/patologia , Vilosidades Coriônicas/transplante , Vilosidades Coriônicas/virologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Rim/irrigação sanguínea , Rim/patologia , Camundongos , Camundongos SCID , Gravidez , Células-Tronco/patologia , Células-Tronco/virologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Replicação ViralRESUMO
Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb). Here, we designed a plasmid-based viral genome assembly and resc ue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.
RESUMO
Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb). Here, we present a plasmid-based viral genome assembly and rescue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Animais , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral/genética , RNA Viral/genética , SARS-CoV-2/genética , RNA Subgenômico/genéticaRESUMO
The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous recombinants such as "Deltacron." We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2) immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinação , Deriva e Deslocamento Antigênicos , Infecções Irruptivas , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
The long-lasting COVID-19 pandemic and increasing SARS-CoV-2 variants demand effective drugs for prophylactics and treatment. Protein-based biologics offer high specificity, yet their noncovalent interactions often lead to drug dissociation and incomplete inhibition. Here, we have developed covalent nanobodies capable of binding with SARS-CoV-2 irreversibly via a proximity-enabled reactive therapeutic (PERx) mechanism. A latent bioreactive amino acid (FFY) was designed and genetically encoded into nanobodies to accelerate the PERx reaction rate. Compared with the noncovalent wild-type nanobody, the FFY-incorporated covalent nanobodies neutralized both wild-type SARS-CoV-2 and its Alpha, Delta, Epsilon, Lambda, and Omicron variants with drastically higher potency. This PERx-enabled covalent-nanobody strategy and the related insights into increased potency can be valuable to developing effective therapeutics for various viral infections.
RESUMO
The long-lasting COVID-19 pandemic and increasing SARS-CoV-2 variants demand effective drugs for prophylactics and treatment. Protein-based biologics offer high specificity yet their noncovalent interactions often lead to drug dissociation and incomplete inhibition. Here we developed covalent nanobodies capable of binding with SARS-CoV-2 spike protein irreversibly via proximity-enabled reactive therapeutic (PERx) mechanism. A novel latent bioreactive amino acid FFY was designed and genetically encoded into nanobodies to accelerate PERx reaction rate. After covalent engineering, nanobodies binding with the Spike in the down state, but not in the up state, were discovered to possess striking enhancement in inhibiting viral infection. In comparison with the noncovalent wildtype nanobody, the FFY-incorporated covalent nanobody neutralized both authentic SARS-CoV-2 and its Alpha and Delta variants with potency drastically increased over tens of folds. This PERx-enabled covalent nanobody strategy and uncovered insights on potency increase can be valuable to developing effective therapeutics for various viral infections.
RESUMO
Human cytomegalovirus (HCMV) is the leading viral cause of congenital disease and permanent birth defects worldwide. Although the development of an effective vaccine is a public health priority, no vaccines are approved. Among the major antigenic targets are glycoproteins in the virion envelope, including gB, which facilitates cellular entry, and the pentameric complex (gH/gL/pUL128-131), required for the infection of specialized cell types. In this study, sera from rabbits immunized with the recombinant pentameric complex were tested for their ability to neutralize infection of epithelial cells, fibroblasts, and primary placental cell types. Sera from rhesus macaques immunized with recombinant gB or gB plus pentameric complex were tested for HCMV neutralizing activity on both cultured cells and cell column cytotrophoblasts in first-trimester chorionic villus explants. Sera from rabbits immunized with the pentameric complex potently blocked infection by pathogenic viral strains in amniotic epithelial cells and cytotrophoblasts but were less effective in fibroblasts and trophoblast progenitor cells. Sera from rhesus macaques immunized with the pentameric complex and gB more strongly reduced infection in fibroblasts, epithelial cells, and chorionic villus explants than sera from immunization with gB alone. These results suggest that the pentameric complex and gB together elicit antibodies that could have potential as prophylactic vaccine antigens.
RESUMO
The Omicron SARS-CoV-2 virus contains extensive sequence changes relative to the earlier arising B.1, B.1.1 and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (SC2-VLPs), we examined mutations in all four structural proteins and found that Omicron showed increased infectivity relative to B.1, B.1.1 and similar to Delta, a property conferred by S and N protein mutations. Thirty-eight antisera samples from individuals vaccinated with tozinameran (Pfizer/BioNTech), elasomeran (Moderna), Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had moderately to dramatically reduced efficacy to prevent cell transduction by VLPs containing the Omicron mutations. The Pfizer/BioNTech and Moderna vaccine antisera showed strong neutralizing activity against VLPs possessing the ancestral spike protein (B.1, B.1.1), with 3-fold reduced efficacy against Delta and 15-fold lower neutralization against Omicron VLPs. Johnson & Johnson antisera showed minimal neutralization of any of the VLPs tested. Furthermore, the monoclonal antibody therapeutics Casirivimab and Imdevimab had robust neutralization activity against B.1, B.1.1 or Delta VLPs but no detectable neutralization of Omicron VLPs. Our results suggest that Omicron is at least as efficient at assembly and cell entry as Delta, and the antibody response triggered by existing vaccines or previous infection, at least prior to boost, will have limited ability to neutralize Omicron. In addition, some currently available monoclonal antibodies will not be useful in treating Omicron-infected patients.
RESUMO
Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.
Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Interferons , Camundongos , Proteínas Nucleares , Fatores de Transcrição , Proteínas ViraisRESUMO
Human cytomegalovirus (HCMV) is the major viral cause of birth defects worldwide. Affected infants can have temporary symptoms that resolve soon after birth, such as growth restriction, and permanent disabilities, including neurological impairment. Passive immunization of pregnant women with primary HCMV infection is a promising treatment to prevent congenital disease. To understand the effects of sustained viral replication on the placenta and passive transfer of protective antibodies, we performed immunohistological analysis of placental specimens from women with untreated congenital infection, HCMV-specific hyperimmune globulin treatment, and uninfected controls. In untreated infection, viral replication proteins were found in trophoblasts and endothelial cells of chorionic villi and uterine arteries. Associated damage included extensive fibrinoid deposits, fibrosis, avascular villi, and edema, which could impair placental functions. Vascular endothelial growth factor and its receptor fms-like tyrosine kinase 1 (Flt1) were up-regulated, and amniotic fluid contained elevated levels of soluble Flt1 (sFlt1), an antiangiogenic protein, relative to placental growth factor. With hyperimmune globulin treatment, placentas appeared uninfected, vascular endothelial growth factor and Flt1 expression was reduced, and sFlt1 levels in amniotic fluid were lower. An increase in the number of chorionic villi and blood vessels over that in controls suggested compensatory development for a hypoxia-like condition. Taken together the results indicate that antibody treatment can suppress HCMV replication and prevent placental dysfunction, thus improving fetal outcome.