Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631610

RESUMO

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Assuntos
Grafite , Nanoestruturas , Óxido Nítrico , Grafite/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestruturas/química , Humanos , Dipeptídeos/química , Fenilalanina/química , Fenilalanina/análogos & derivados
2.
JACC Basic Transl Sci ; 9(5): 691-709, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38984042

RESUMO

A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.

3.
ACS Biomater Sci Eng ; 10(4): 1946-1965, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38427627

RESUMO

Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.


Assuntos
Antineoplásicos , Neoplasias , Zeína , Humanos , Portadores de Fármacos/uso terapêutico , Zeína/química , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
4.
Redox Biol ; 72: 103144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613920

RESUMO

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Assuntos
Grafite , Óxido Nítrico , Grafite/química , Óxido Nítrico/metabolismo , Humanos , Nanoestruturas/química , Porosidade , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
5.
Appl Phys Rev ; 10: 041310, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38229764

RESUMO

Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA