Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Appl Acarol ; 60(3): 411-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23344639

RESUMO

In order to get a better understanding of the importance of vertical forest structure as a component of Ixodes ricinus tick habitat, an experiment was set up in a coniferous forest on sandy soils in northern Belgium. Ticks were sampled in six control and six treatment plots on various sampling occasions in 2008-2010. In the course of the study period, a moderate thinning was carried out in all plots and shrub clearing was performed in the treatment plots. Thinning had no effect on tick abundance, while shrub clearing had an adverse affect on the abundance of all three life stages (larva, nymph, adult) up to 2 years post-clearing. Our findings are especially relevant in the light of the ongoing efforts to improve vertical forest structure in Belgium and many other parts of Europe, which might create suitable habitats for ticks and change the epidemiology of tick-borne diseases. Also, our results indicate that shrub clearing could be applied as a tick control measure in recreational areas where there is a high degree of human-tick contact.


Assuntos
Ecossistema , Ixodes/fisiologia , Controle de Ácaros e Carrapatos/métodos , Animais , Bélgica , Agricultura Florestal/métodos , Modelos Lineares , Densidade Demográfica , Dinâmica Populacional , Árvores
2.
PhytoKeys ; 206: 137-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761267

RESUMO

In this data paper, we present a specimen-based occurrence dataset compiled in the framework of the Conservation of Endemic Central African Trees (ECAT) project with the aim of producing global conservation assessments for the IUCN Red List. The project targets all tree species endemic or sub-endemic to the Central African region comprising the Democratic Republic of the Congo (DR Congo), Rwanda, and Burundi. The dataset contains 6361 plant collection records with occurrences of 8910 specimens from 337 taxa belonging to 153 genera in 52 families. Many of these tree taxa have restricted geographic ranges and are only known from a small number of herbarium specimens. As assessments for such taxa can be compromised by inadequate data, we transcribed and geo-referenced specimen label information to obtain a more accurate and complete locality dataset. All specimen data were manually cleaned and verified by botanical experts, resulting in improved data quality and consistency.

3.
Exp Appl Acarol ; 54(3): 285-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21431925

RESUMO

Estimating the spatial and temporal variation in tick abundance is of great economical and ecological importance. Entire-blanket dragging is the most widely used method to sample free-living ixodid ticks. However, this technique is not equally efficient in different vegetation types. The height and structure of the vegetation under study will not only determine the likelihood of a tick-blanket contact, but will also determine the rate of dislodgement. The purpose of this study was therefore to determine whether the alternative strip-blanket is more effectively in picking up ticks than the standard entire-blanket. Sampling was carried out in four forest understory vegetation types that differed in height and structure on five collection dates between April and September 2008. A total of 8,068 Ixodes ricinus ticks was collected (778 adults, 1,920 nymphs, and 5,370 larvae). The highest numbers of ticks were collected along the forest trails, where the dominant vegetation consisted of short grasses. The lowest numbers of ticks were collected in bracken-fern-dominated sites, where the vegetation seriously hampered tick sampling. Surprisingly, in each vegetation type, significantly more nymphs and adults were collected using the entire-blanket. However, the strip-blanket was more effectively in collecting larvae, especially in dense and tall vegetation.


Assuntos
Ecologia/métodos , Ixodes/fisiologia , Árvores , Animais , Feminino , Umidade , Ixodes/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Ninfa/fisiologia , Plantas , Densidade Demográfica , Estações do Ano , Temperatura
4.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295627

RESUMO

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Assuntos
Ceratopogonidae , Aprendizado de Máquina , Dinâmica Populacional , Animais , Ceratopogonidae/virologia , Clima , Ecossistema , Europa (Continente) , Fazendas , Insetos Vetores/virologia , Modelos Teóricos , Estações do Ano
5.
Ticks Tick Borne Dis ; 9(2): 141-145, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28869190

RESUMO

The human pathogens Borrelia afzelii, which causes Lyme borreliosis and B. miyamotoi, which causes relapsing fever, both circulate between Ixodes ricinus ticks and rodents. The spatiotemporal dynamics in the prevalence of these pathogens have not yet been fully elucidated, but probably depend on the spatiotemporal population dynamics of small rodents. We aimed to evaluate the effect of different forest types on the density of infected nymphs in different years and to obtain more knowledge about the spatial and temporal patterns of ticks and tick-borne pathogens. We analysed unfed nymphal ticks from 22 stands of four different forest types in Belgium in 2009, 2010, 2013 and 2014 and found that the density of nymphs in general and the density of nymphs infected with B. afzelii and B. miyamotoi varied yearly, but without temporal variation in the infection prevalence. The yearly variation in density of infected nymphs in our study thus seems to be caused most by the variation in the density of nymphs, which makes it a good predictor of disease risk. The risk for rodent-associated tick-borne diseases also varied between forest types. We stress the need to elucidate the contribution of the host community composition to tick-borne disease risk.


Assuntos
Borrelia/fisiologia , Ixodes/microbiologia , Doenças dos Roedores/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Animais , Bélgica/epidemiologia , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/crescimento & desenvolvimento , Doença de Lyme/epidemiologia , Ninfa/microbiologia , Densidade Demográfica , Prevalência , Doenças dos Roedores/microbiologia , Estações do Ano , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
6.
Parasit Vectors ; 11(1): 112, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482593

RESUMO

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. METHODS: We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. RESULTS: The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. CONCLUSION: We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.


Assuntos
Ceratopogonidae , Insetos Vetores , Doença Equina Africana/transmissão , Animais , Bluetongue/transmissão , Ceratopogonidae/classificação , Europa (Continente) , Fazendas , Geografia , Insetos Vetores/classificação , Densidade Demográfica , Dinâmica Populacional , Ruminantes , Estações do Ano , Especificidade da Espécie
7.
Parasit Vectors ; 11(1): 608, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497537

RESUMO

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. METHODS: We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. RESULTS: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. CONCLUSIONS: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.


Assuntos
Ceratopogonidae/fisiologia , Distribuição Animal , Animais , Ceratopogonidae/classificação , Ceratopogonidae/genética , Ecossistema , Meio Ambiente , Europa (Continente) , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
8.
Parasit Vectors ; 7: 365, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127547

RESUMO

BACKGROUND: Anaplasma phagocytophilum is the etiological agent of granulocytic anaplasmosis in humans and animals. Wild animals and ticks play key roles in the enzootic cycles of the pathogen. Potential ecotypes of A. phagocytophilum have been characterized genetically, but their host range, zoonotic potential and transmission dynamics has only incompletely been resolved. METHODS: The presence of A. phagocytophilum DNA was determined in more than 6000 ixodid ticks collected from the vegetation and wildlife, in 289 tissue samples from wild and domestic animals, and 69 keds collected from deer, originating from various geographic locations in The Netherlands and Belgium. From the qPCR-positive lysates, a fragment of the groEL-gene was amplified and sequenced. Additional groEL sequences from ticks and animals from Europe were obtained from GenBank, and sequences from human cases were obtained through literature searches. Statistical analyses were performed to identify A. phagocytophilum ecotypes, to assess their host range and their zoonotic potential. The population dynamics of A. phagocytophilum ecotypes was investigated using population genetic analyses. RESULTS: DNA of A. phagocytophilum was present in all stages of questing and feeding Ixodes ricinus, feeding I. hexagonus, I. frontalis, I. trianguliceps, and deer keds, but was absent in questing I. arboricola and Dermacentor reticulatus. DNA of A. phagocytophilum was present in feeding ticks and tissues from many vertebrates, including roe deer, mouflon, red foxes, wild boar, sheep and hedgehogs but was rarely found in rodents and birds and was absent in badgers and lizards. Four geographically dispersed A. phagocytophilum ecotypes were identified, that had significantly different host ranges. All sequences from human cases belonged to only one of these ecotypes. Based on population genetic parameters, the potentially zoonotic ecotype showed significant expansion. CONCLUSION: Four ecotypes of A. phagocytophilum with differential enzootic cycles were identified. So far, all human cases clustered in only one of these ecotypes. The zoonotic ecotype has the broadest range of wildlife hosts. The expansion of the zoonotic A. phagocytophilum ecotype indicates a recent increase of the acarological risk of exposure of humans and animals.


Assuntos
Anaplasma phagocytophilum/classificação , Anaplasmose/parasitologia , Anaplasma phagocytophilum/genética , Anaplasmose/epidemiologia , Animais , Europa (Continente)/epidemiologia , Feminino , Haplótipos , Humanos , Ixodidae/parasitologia , Larva/parasitologia , Masculino , Ninfa , Filogenia
9.
Parasit Vectors ; 6: 190, 2013 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23800283

RESUMO

BACKGROUND: The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. METHODS: In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. RESULTS: Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. CONCLUSION: This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.


Assuntos
Ecossistema , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/classificação , Carrapatos/crescimento & desenvolvimento , Topografia Médica , Animais , Bélgica/epidemiologia , Feminino , Humanos , Insetos Vetores/classificação , Insetos Vetores/crescimento & desenvolvimento , Infestações por Carrapato/epidemiologia , Carrapatos/microbiologia , Carrapatos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA