Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 21, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183090

RESUMO

Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.


Assuntos
Nanopartículas Metálicas , Periodontite , Óxido de Zinco , Animais , Humanos , Óxidos , Ouro , Nanopartículas Metálicas/uso terapêutico , Periodontite/tratamento farmacológico , Antibacterianos/farmacologia , Mamíferos
2.
J Nanobiotechnology ; 22(1): 207, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664778

RESUMO

Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.


Assuntos
Antibacterianos , Biofilmes , Implantes Dentários , Peri-Implantite , Periodontite , Peri-Implantite/tratamento farmacológico , Peri-Implantite/microbiologia , Humanos , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Implantes Dentários/microbiologia , Animais , Nanopartículas/química , Bactérias/efeitos dos fármacos
3.
Dent Res J (Isfahan) ; 18: 23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249249

RESUMO

The use of computer-aided design/computer-aided manufacturing technology simplifies the laboratory and clinical steps for the fabrication of implant prostheses. It also reduces additional costs for the prosthetic components and technical procedures. This article describes a modified impression technique using an impression metal jig to enhance the accuracy of final impression and also to eliminate the need for the try-in of resin pattern of the milled bar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA