Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Res Cardiol ; 113(9): 1343-1354, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38565710

RESUMO

BACKGROUND: Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems. OBJECTIVE: To assess the performance and ease of implementation of Machine learning Assessment of RisK and EaRly mortality in Heart Failure (MARKER-HF), a machine-learning model that uses structured data that is readily available in the EHR, and compare it with two commonly used risk scores: the Seattle Heart Failure Model (SHFM) and Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score. DESIGN: Retrospective, cohort study. PARTICIPANTS: Data from 6764 adults with HF were abstracted from EHRs at a large integrated health system from 1/1/10 to 12/31/19. MAIN MEASURES: One-year survival from time of first cardiology or primary care visit was estimated using MARKER-HF, SHFM, and MAGGIC. Discrimination was measured by the area under the receiver operating curve (AUC). Calibration was assessed graphically. KEY RESULTS: Compared to MARKER-HF, both SHFM and MAGGIC required a considerably larger amount of data engineering and imputation to generate risk score estimates. MARKER-HF, SHFM, and MAGGIC exhibited similar discriminations with AUCs of 0.70 (0.69-0.73), 0.71 (0.69-0.72), and 0.71 (95% CI 0.70-0.73), respectively. All three scores showed good calibration across the full risk spectrum. CONCLUSIONS: These findings suggest that MARKER-HF, which uses readily available clinical and lab measurements in the EHR and required less imputation and data engineering than SHFM and MAGGIC, is an easier tool to identify high-risk patients in ambulatory clinics who could benefit from referral to a HF specialist.


Assuntos
Prestação Integrada de Cuidados de Saúde , Registros Eletrônicos de Saúde , Insuficiência Cardíaca , Aprendizado de Máquina , Humanos , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/diagnóstico , Medição de Risco/métodos , Feminino , Masculino , Estudos Retrospectivos , Idoso , Prestação Integrada de Cuidados de Saúde/organização & administração , Pessoa de Meia-Idade , Fatores de Risco , Prognóstico , Taxa de Sobrevida/tendências
2.
Eur J Heart Fail ; 22(1): 139-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721391

RESUMO

BACKGROUND: Predicting mortality is important in patients with heart failure (HF). However, current strategies for predicting risk are only modestly successful, likely because they are derived from statistical analysis methods that fail to capture prognostic information in large data sets containing multi-dimensional interactions. METHODS AND RESULTS: We used a machine learning algorithm to capture correlations between patient characteristics and mortality. A model was built by training a boosted decision tree algorithm to relate a subset of the patient data with a very high or very low mortality risk in a cohort of 5822 hospitalized and ambulatory patients with HF. From this model we derived a risk score that accurately discriminated between low and high-risk of death by identifying eight variables (diastolic blood pressure, creatinine, blood urea nitrogen, haemoglobin, white blood cell count, platelets, albumin, and red blood cell distribution width). This risk score had an area under the curve (AUC) of 0.88 and was predictive across the full spectrum of risk. External validation in two separate HF populations gave AUCs of 0.84 and 0.81, which were superior to those obtained with two available risk scores in these same populations. CONCLUSIONS: Using machine learning and readily available variables, we generated and validated a mortality risk score in patients with HF that was more accurate than other risk scores to which it was compared. These results support the use of this machine learning approach for the evaluation of patients with HF and in other settings where predicting risk has been challenging.


Assuntos
Insuficiência Cardíaca , Estudos de Coortes , Insuficiência Cardíaca/diagnóstico , Humanos , Aprendizado de Máquina , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA